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Abstract

In the present thesis the linear theories of viscoelasticity and ther-
moviscoelasticity for isotropic and homogeneous Kelvin-Voigt mate-
rials with voids are considered and some basic results of the classical
theories of elasticity and thermoelasticity are generalized. Indeed,
the basic properties of plane harmonic waves in the linear theory of
viscoelasticity for Kelvin-Voigt materials with voids are established.
There are two longitudinal and two transverse attenuated plane waves
in the Kelvin-Voigt material with voids. In the considered theories
the fundamental solutions of the systems of equations of steady vi-
brations are constructed by means of elementary functions and their
basic properties are established. The representations of Galerkin type
solutions of the systems of equations of steady vibrations are obtained.
The Green’s formulas and integral representations of Somigliana type
of regular vector and classical solutions are obtained. The formulas of
representations of the general solution for the system of homogeneous
equations of steady vibrations are established. The completeness of
these representations of solutions is proved. The uniqueness theo-
rems of the internal and external boundary value problems (BVPs) of
steady vibrations in the linear theories of viscoelasticity and thermo-
viscoelasticity for Kelvin-Voigt materials with voids are proved. The
basic properties of surface (single-layer and double-layer) and volume
potentials are studied. On the basis of these potentials the BVPs are
reduced to the singular integral equations. The corresponding sin-
gular integral operators are of the normal type with an index equal
to zero. The Fredholm’s theorems are valid for these singular inte-
gral operators. Finally, the existence theorems of classical solutions of

the above mentioned BVPs of the linear theories of viscoelasticity and



thermoviscoelasticity for Kelvin-Voigt materials with voids are proved
by using the potential method (boundary integral equation method)

and the theory of singular integral equations.
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Chapter 1

Introduction

1.1 Thesis structure

The structure of the thesis is as follows: the content of this thesis is divided into
six chapters. Chapters 2 to 5 can be roughly divided into two parts. The first part
(Chapters 2 and 3) and the second part (Chapters 4 and 5) include the investiga-
tion of problems of the linear theories of viscoelasticity and thermoviscoelasticity
for Kelvin-Voigt materials with voids, respectively. In the final chapter the basis
results of this thesis are summarized and some fields of application of these results
are analyzed.

Each Chapter is articulated as follows:

In the next sections of this chapter (Sections 1.2 and 1.3) a review of the
literature on the theories of viscoelasticity and thermoviscoelasticity is presented
and the basic notations are given. These notations are used throughout this
thesis.

Chapter 2 (Sections 2.1 to 2.4) is focused on the solutions of the system of
equations of steady vibrations in the linear theory of viscoelasticity for isotropic
and homogeneous Kelvin-Voigt materials with voids. Indeed, the governing equa-
tions of steady vibrations of the linear theory of viscoelasticity are given. The
basic properties of solutions of the dispersion equations of longitudinal and trans-
verse plane harmonic waves are studied. The fundamental solution of the system

of equations of steady vibrations is constructed by means of elementary func-
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tions and its some basic properties are established. Finally, Green’s formulas and
integral representations of general solutions of the above mentioned system of
equations are obtained.

In Chapter 3 (Sections 3.1 to 3.4) the basic internal and external BVPs of
steady vibrations of the linear theory of viscoelasticity for Kelvin-Voigt materials
with voids are investigated using the potential method and the theory of singular
integral equations. Indeed, the basic BVPs are formulated and the uniqueness
theorems of classical solutions of these BVPs are proved. The basic properties of
the elastopotentials and the singular integral operators are established. On the
basis of these potentials the BVPs are reduced to the singular integral equations.
The corresponding singular integral operators are of the normal type with an
index equal to zero. The Fredholm’s theorems are valid for these singular integral
operators. Finally, the existence theorems of classical solutions of the BVPs of
steady vibrations are proved.

Chapter 4 (Sections 4.1 to 4.5) treats the solutions of the system of equations
of steady vibrations in the the linear theory of thermoviscoelasticity for Kelvin-
Voigt materials with voids. Indeed, the governing equations of steady vibrations
of the linear theory of thermoviscoelasticity are given. The fundamental solution
of the system of equations of steady vibrations is constructed by means of ele-
mentary functions and its some basic properties are established. The Galerkin
type solution of the system of nonhomogeneous equations and the representation
of general solution of the system of homogeneous equations are obtained. The
Green’s formulas and integral representations of general solutions of the systems
of equations of steady vibrations are presented.

In Chapter 5 (Sections 5.1 to 5.4) the basic internal and external BVPs of
steady vibrations of the linear theory of thermoviscoelasticity for Kelvin-Voigt
materials with voids are investigated using the potential method and the theory
of singular integral equations. Indeed, the basic BVPs are formulated and the
uniqueness theorems of classical solutions of these BVPs are proved. The basic
properties of the thermoelastopotentials (single-layer, double-layer and volume
potentials) and the singular integral operators are established. On the basis of
these potentials the BVPs are reduced to the singular integral equations. The

corresponding singular integral operators are of the normal type with an index
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equal to zero. Therefore, Fredholm’s theorems are valid for these singular integral
operators. Finally, the existence theorems of classical solutions of the BVPs of
steady vibrations are proved.

The main results of the Chapters 2 to 5 are published in the papers of author
of this thesis (see Svanadze [1 - 4]).

1.2 On the theories of viscoelasticity and ther-

moviscoelasticity: Literature review

The theories of viscoelasticity initiated by J. C. Maxwell, O. E. Meyer, L. Boltz-
mann, and studied by W. Voigt, Lord Kelvin (W. Thomson), S. Zaremba, V.
Volterra and others. These theories, which include the Maxwell model, the
Kelvin-Voigt model, and the standard linear solid model, were used to predict a
material’s response under different loading conditions (see Eringen [5], Truesdell
and Noll [6], Christensen [7], Amendola et al. [8]).

Viscoelastic materials play an important role in many branches of civil engi-
neering, geotechnical engineering, technology and, in recent years, biomechanics.
Viscoelastic materials, such as amorphous polymers, semicrystalline polymers,
and biopolymers, can be modeled in order to determine their stress or strain in-
teractions as well as their temporal dependencies (see Shaw and MacKnight [9],
Ferry [10]). Study of bone viscoelasticity is best placed in the context of strain
levels and frequency components associated with normal activities and with appli-
cations of diagnostic tools (see Lakes [11]). The investigations of the solutions of
viscoelastic wave equations and the attenuation of seismic wave in the viscoelas-
tic media are very important for geophysical prospecting technology. In addition,
the behavior of viscoelastic porous materials can be understood and predicted
in great detail using nano-mechanics. The applications of these materials are
many. One of the applications may be to the NASA space program, such as the
prediction of soils behavior in the Moon and Mars (for details, see Voyiadjis and
Song [12], Polarz and Smarsly [13], Chen et al. [14], Gutierrez-Lemini [15] and
references therein).

A great attention has been paid to the theories taking into account the vis-
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coelastic effects (see Amendola et al. [8], Fabrizio and Morro [16], Di Paola and
Zingales [17, 18]). The existence and the asymptotic stability of solutions in the
linear theory of viscoelasticity for solids are investigated by Fabrizio and Lazzari
[19], and Appleby et al. [20]. The main results on the free energy in the linear
viscoelasticity are obtained in the series of papers [21 - 28]. A general way to
provide existence of the initial and BVPs for linear viscoelastic bodies is provided
without the need of appealing to transient solutions is presented by Fabrizio and
Morro [16], Fabrizio and Lazzari [19], and Deseri et al. [21].

Material having small distributed voids may be called porous material or ma-
terial with voids. The intended application of the theory of elastic material with
voids may be found in geological materials like rocks and soils, in biological and
manufactured porous materials for which the theory of elasticity is inadequate.
But seismology represents only one of the many fields where the theories of elas-
ticity and viscoelasticity of materials with voids is applied. Medicine, various
branches of biology, the oil exploration industry and nanotechnology are other
important fields of application.

The theories of elasticity and thermoelasticity for materials with voids have
been a subject of intensive study in recent years. The initial variant (linear and
non-linear) of the theory of elasticity for materials with voids proposed by Nun-
ziato and Cowin [29, 30] and developed by several authors in the series of papers
[31 - 40]. A linear theory of thermoelastic materials with voids was considered
and the acceleration waves were studied by lesan [41]. Scalia [42] considered a
grade consistent micropolar theory of thermoelasticity for materials with voids.
The Galerkin type solution in the theory of thermoelastic materials with voids
was constructed by Ciarletta [43]. The steady vibrations problems of this theory
was investigated by Pompei and Scalia [44]. The spatial and temporal behavior
of solutions in linear thermoelasticity of solids with voids were studied by Chirita
and Scalia [45]. The basis properties of the acceleration and plane harmonic
waves in this theory were established by Ciarletta and Straughan [46], Singh [47],
Singh and Tomar [48]. Passarella [49] introduced a theory of micropolar ther-
moelasticity for materials with voids based on the Lebon [50] law for the heat
conduction (hyperbolic-type heat equation). A theory of thermoelastic materials

with voids without energy dissipation was presented by De Cicco and Diaco [51].
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Various theories of viscoelastic materials with voids of integral type have been
proposed and a wide class of problems was studied by Cowin [52], Ciarletta and
Scalia [53], Scalia [54], De Cicco and Nappa [55], and Martinez and Quintanilla
[56]. In the last decade there are been interest in formulation of the mechanical
theories of viscoelastic materials with voids of differential type. In this connec-
tion, Iesan [57] has developed a nonlinear theory for a viscoelastic composite as a
mixture of a porous elastic solid and a Kelvin-Voigt material. A linear variant of
this theory was developed by Quintanilla [58], and existence and exponential de-
cay of solutions were proved. A theory of thermoviscoelastic composites modelled
as interacting Cosserat continua was presented by Iesan [59]. Tesan and Nappa
[60] introduced a nonlinear theory of heat conducting mixtures where the indi-
vidual components were modelled as Kelvin-Voigt viscoelastic materials. Some
exponential decay estimates of solutions of equations of steady vibrations in the
theory of viscoelastricity for Kelvin-Voigt materials were obtained by Chirita et
al. [61].

In [62], Iesan extends theory of elastic materials with voids (see Nunziato and
Cowin [29, 30]), the basic equations of the nonlinear theory of thermoviscoelastic-
ity for Kelvin-Voigt materials with voids were established, the linearized version
of this theory was derived, a uniqueness result and the continuous dependence of
solution upon the initial data and supply terms were proved. The basic BVPs of
steady vibrations in the linear theories of viscoelasticity and thermoviscoelastic-
ity (see lesan [62]) for materials with voids were investigated by using potential
method and the theory of singular integral equation in [1 - 4]. This method was
also developed in the classical theories of viscoelasticity and thermoviscoelastic-
ity for Kelvin-Voigt materials without voids and the uniqueness and existence
theorems were proved by Svanadze [63 - 65].

Recently, the theory of thermoviscoelasticity for Kelvin-Voigt microstretch
composite materials was presented by Passarella et al. [66]. The propagation of
plane harmonic waves in an isotropic generalized thermoviscoelastic medium with
voids is studied and the fundamental solution of system of differential equations
in the theory of generalized thermoviscoelasticity with voids is constructed by
Sharma and Kumar [67], Tomar et al. [68].

An account of the historical developments of the theory of porous media as
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well as references to various contributions may be found in the books by de Boer
[69], Tesan [70], Straughan [71, 72] and the references therein. A new approach
may be found in Amendola et al. [8], although this is not limited just to voids.

The investigation of the BVPs of mathematical physics by the classical po-
tential method has more that a hundred year history. The application of this
method to the 3D (2D) basic BVPs of mathematical physics and the theory of
elasticity reduces these problems to 2D (1D) integral equations. In mathematical
physics the Dirichlet, Neumann, Robin and mixed type BVPs were reduced to the
equivalent Fredholms integral equations by the virtue of the harmonic potentials
(for details, see Kellogg [73], Giinther [74], Hsiao and Wendland [75], Cheng and
Cheng [76]). The existence theorems for the internal and external BVPs were
proved by Fredholm’s [77] theory of integral equations.

In the beginning of the 20th century the basic BVPs of the classical theory of
elasticity were reduced to the equivalent integral equations by using the elastopo-
tentials. The boundary integrals were strongly singular and need to be defined in
terms of Cauchy principal value integrals. It was necessary to construct the the-
ory of 1D and multidimensional singular integral equations for proof the existence
theorems by potential method.

The corresponding potentials were constructed and applied to BVPs of the
classical theory of elasticity in the works of representatives of the Italian mathe-
matical school (E. Betti, T. Boggio, G. Lauricella, R. Marcolongo, F. Tricomi, V.
Volterra and others). The main results in this subject are obtained by J. Boussi-
nesq, K. Korn, H. Weyl, H. Poincaré, Georgian scientists (N. Muskhelishvili, T.
Vekua, V. Kupradze, T. Gegelia, M. Basheleishvili, T. Burchuladze) and others.

Indeed, Muskhelishvili [78, 79] developed the theory of 1D singular integral
equations and, using this theory, studied plane BVPs of the classical theory of
elasticity. Vekua [80] presented the general methods of construction of the Shell
theory. Owing to the works of Mikhlin [81], Kupradze [82], Kupradze et al.
[83], and Burchuladze and Gegelia [84], the theory of multidimensional singular
integral equations has presently been worked out with sufficient completeness.

In the 60ies of the 20th century singular potentials had been studied com-
pletely by A. Calderon, A. Zygmund, F. Tricomi, G. Giraud, T. Gegelia and

others, and the existence of solutions of the basic BVPs of the 3D classical the-
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ory of elasticity was proved by the potential method. Then, in the 70ies, the
dynamical and contact problems of the classical theories of elasticity and ther-
moelasticity were studied completely by the Georgian mathematicians led by V.
Kupradze (for details, see Kupradze et al. [83], and Burchuladze and Gegelia [84]
and references therein). An extensive review of works on the potential method
can be found in the survey paper by Gegelia and Jentsch [85].

In the next chapters the basic BVPs of the linear theories of viscoelasticity
and thermoviscoelasticity for Kelvin-Voigt materials with voids are investigated

by using the potential method and the theory of singular integral equations.

1.3 Basic notations

Each chapter has its own numeration of formulas. The formula number is denoted
by two figures enclosed in brackets; for example, (3.2) means the second formula
in the third chapter. Theorems, lemmas, definitions and remarks are numerated
in the same manner but without brackets; for example, theorem 3.2 means the
second theorem in the third chapter.

We denote the vectors (vectors fields), matrices (matrices fields) and points of
the Euclidean three-dimensional space R? by boldface letter, and scalars (scalar
fields) by Italic lightface letters.

Let x = (21,2, 23) be a point of R3, the ¢ denotes the time variable, ¢t > 0,
D, = <6%1, 8%2, a%g); the nabla (gradient) and the Laplacian operators will be
designated by V and A, respectively; d;; and 6(x) denote the Kronecker’s and

Dirac delta, respectively; the unit matrices will always denote by I = (d;;)

3x3?
J = <5lj)4><4 and J/ = (5lj>5><5-
The inner (scalar) product of two vectors w = (wy,ws, -+, w;) and v =
!
(v1,v9, -+, v;) is denoted by w - v = w;v;, where 7, is the complex conjugate

j=1
of v;. If [ = 3, then the vector product of vectors w and v is denoted by [w x v].

We consider an isotropic homogeneous viscoelastic Kelvin-Voigt material with
voids that occupies the region Q of R®. In the sequel we shall use the following
notations from the theories of viscoelasticity and thermoviscoelasticity for Kelvin-

Voigt materials with voids (see Iesan [62]):
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;; is the component of the total stress tensor;

H is the component of the equilibrated stress;

H| is the intrinsic equilibrated body force;

u' = (uf,uh, uly) and u = (uq, us, u3) are the displacement vectors;

¢’ and ¢ are the volume fraction fields;

F = (F,F,,F;) and F = (F1,F, F3) are the body forces per unit mass;

F), and F, are the extrinsic equilibrated body forces per unit mass;

% and F; are the heat supply per unit mass and unit time;

1’ is the entropy per unit mass and unit time;

@ is the component of heat flux vector;

e;; is the component of the strain tensor;

p is the reference mass density, p > 0;

k' is the equilibrated inertia, ' > 0, py = pK/;

w is the oscillation (angular) frequency, w > 0;

T} is the constant absolute temperature of the body in the reference configuration,
T > 0;

0" and 6 are the temperatures measured from Tp;

ANy 15 b, 0% o o € EF Vv kT my a, B, ¢ are the constitutive coefficients.
Throughout this thesis, we employ the Einstein summation convention ac-

cording to which summation over the range 1, 2, 3 is implied for any index that

is repeated twice in any term, a subscript preceded by a comma denotes par-

tial differentiation with respect to the corresponding Cartesian coordinate, and a

superposed dot denotes differentiation with respect to ¢, so that, for instance,

9 3 9?2
0= <o--—_E — =Ap
" (%vj’ 73 = 03532- ’

dp'(x,t)

D¢’ (x,t)
ot '’ '

Plxt) = o2

p(x,1) =

Let S be the smooth closed surface surrounding the finite domain Q7% in
R} Qt=QTUS, Q" =R\QH, Q- =0 US.
A vector function U = (U, Uy, - -+, U)) is called regular in Q= (or Q) if



1.3 Basic notations

1)
U, € C2Q)NCYQYT)  (or U, € C2(QY) N CHQY)),
2)
Uj(x) = 0(x|™),  Up(x)=o(x[7)  for [x[>1, (1.1)

where j =1,2,--- land r=1,2,3.
In the Chapters 2 and 3 (Chapters 4 and 5) we consider a class of four-

component (five-component) regular vectors.



Chapter 2

Solutions of equations in the
theory of viscoelasticity for

materials with voids

2.1 Basic equations

The theory of elasticity for solids with voids (see Nunziato and Cowin [29, 30]) is
extended by Iesan [62] to the case when the time derivative of the strain tensor
and the time derivative of the gradient of the volume fraction field are included
in the set of independent constitutive variables. The complete system of field
equations in the linear theory of viscoelasticity for Kelvin-Voigt material with
voids consists of the following equations (Iesan [62]):

1) The equations of motion
;= p (il = 57) (2.1)

and
H. .+ H) = pop' — pTF, 1=1,2,3; 2.2
N 0 Po P 45 ) Sy Dy ( : )
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2.1 Basic equations

2) The constitutive equations
Ej = 2,u egj + A e;r&j + bgOlélj + 2,u* 623 + ¥ é;rdlj + b*gD/ 51]',
H) = ag; + a'd 23)

Hy= —bel, —&¢' = v, —€¢,  1j=1,2,3

e

3) The geometrical equations

(uy+uf),  Li=1,2,3 (2.4)

N | —

I

Substituting (2.3) and (2.4) into (2.1) and (2.2), we obtain the following sys-
tem of equations of motion in the linear theory of viscoelasticity for Kelvin-Voigt
materials with voids expressed in terms of the displacement vector u’ and the

volume fraction field ¢’ (Iesan [62])
p AW + A+ p) Vdiva' + bV o' 4+ p* Ad’ + (A + p*) Vdiva' + 0*V ¢’
=p (W - F),
(@A =& ¢"—bdivd' + (oA = &) ¢’ —vodive’

= pop’ — pFy.
(2.5)
If the displacement vector u’ and the volume fraction function ¢’, the body
force F' and the extrinsic equilibrated body force F), are postulated to have a

harmonic time variation, that is,
{u/,gof,ff’,gji;} (X, t) = Re [{u,gp,j}" 3'“4} (X) e—iwt} :

then from system of equations of motion (2.5) we obtain the following system of

equations of steady vibrations in the linear theory of viscoelasticity for Kelvin-

11



2.1 Basic equations

Voigt materials with voids

p1 Au+ (A + p)Vdivu + 0, Ve + pw?u = —pF,

(2.6)
(1 A+ &) p —vidiva = —pJy,
where
AL = A —wwA¥, [ = jb — twp*, by =b—iwb*,
a = o —iwa®, v = b —iwv’, (2.7)

& =E—ws, & =pw’ =&

Obviously, (2.6) is the system of partial differential equations with complex
coefficients in which are 14 real parameters: A\, \*, u, u*, b, 0%, o, ™, &, &, v w, p
and po.

We introduce the matrix differential operator

A(Dx) = (Apy(Dx))

4x4

2
Ajj(Dy) = (1A + pw?)dy; + (M + 1)

dwdx;’
(2.8)
Au(Dy) = blaixl, Ay(Dy) = -1y (%l,
Au(Dy) = A + &, l,j=1,2,3.
The system (2.6) can be written as
A(D,)U(x) =F, (2.9)

where U = (u, p) and F = (—pF, —pF,) are the four-component vector functions
and x € (.
Obviously, if F = 0, then from (2.6) and (2.9) we obtain the following homo-

12



2.2 Solution of the dispersion equations. Plane harmonic waves

geneous equations

pr Au+ (A + pp)Vdivu + 0, Ve + pw?u = 0,
(2.10)
(1 A+&)p—rdiva=0

and
A(D,)U(x) =0, (2.11)

respectively.
Throughout this chapter, we suggest that £ # 0 (the case & = 0 is to simple

to be considered).

2.2 Solution of the dispersion equations. Plane

harmonic waves
We introduce the notations

fo=A+2u,  po=XN+20",  p2 = po — iwpy,

fo=pow? — & A =4pe — (b +v)?,

(2.12)
1
d= e — v = [+ @ —v)?], =0+ W,
a9 = b (b* + V*> y as = WZOé*MS, ay = a*a1 + f*ag.
In this section, it is assumed that
w >0, g > 0, a* >0, d* > 0. (2.13)

On the basis of (2.13) from (2.12) we get

po >0, & >0, d >0, a; > 0, az > 0, ay > 0. (2.14)

13



2.2 Solution of the dispersion equations. Plane harmonic waves

Suppose that plane harmonic waves corresponding to the wave number 7 and
angular frequency w are propagated in the z;-direction through the viscoelastic

Kelvin-Voigt material with voids. Then

u (x,t) =Hexp {i(rz; —wt)},
(2.15)
o' (x,t) = Hyexp{i(rx; —wt)},

where H = (Hy, Hy, H3) ; Hy, Hy, H> and Hj are constants.
Keeping in mind (2.15) from the system of homogeneous equations of motion

of the linear theory of viscoelasticity for Kelvin-Voigt materials with voids (see

(2.5))
pAw + (A + p)Vdiva' + bV’ 4+ p*Ad’ + (X + p*)Vdiv !
+b*V' — pi = 0,
(@A =&’ —bdiva' + (a* A= &) @' —vidivi — pep’ =0
it follows that

{ln + (M + ) 0] 7% — pw?} Hy — ity 6y Hy = 0,

(2.16)
7;7'I/1H1+(O£17'2—€2) HOZO, = 1,2,3.
From (2.16) for Hy and H; we have
(po7? — pw?) Hy — ithby Hy = 0,
(2.17)

iTVlHl + (Oéﬂ'z - 52) HO =0.

For the system (2.17) to have a non-trivial solution for Hy and H; we must set

the determinant of its coefficients equal to zero, thus

ot — (fg,ug + pwlay + blyl) 2+ puw?éy = 0. (2.18)
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2.2 Solution of the dispersion equations. Plane harmonic waves

In the same way from (2.16) for Hy and Hj we have
(1r* — pw?) Hy = 0, l=2,3, (2.19)
and if 7 is the solution of equation
i — pw? =0, (2.20)

then (2.19) has a non-trivial solution.

The relations (2.18) and (2.20) will be called the dispersion equations of lon-
gitudinal and transverse plane waves in the linear theory of viscoelasticity for
Kelvin-Voigt materials with voids, respectively. It is obvious that if 7 > 0, then
the corresponding plane wave has the constant amplitude, and if 7 is complex
with Im 7 > 0, then the plane wave is attenuated as z; — 400 (see Achenbach
[36]).

Let 72, 73 and 73 be roots of equations (2.18) and (2.20) with respect to 72,
respectively. Obviously,

2 P

M1
One may easily verify that 72 is a complex number. Obviously, 71, 72 and 73 are the
wave numbers of longitudinal and transverse plane harmonic waves, respectively.

We denote the longitudinal plane wave with wave number 7; (j = 1,2) by P;
(P-primary), and the transverse horizontal and vertical plane waves with wave

number 73 by SH and SV, respectively (S-secondary, see Achenbach [86]).

Lemma 2.1. If the conditions (2.13) are satisfied, then the equation (2.18) with

respect to 72 has not a positive root.

Proof. Let n be a real root of the equation

a1u2772 - (52#2 + pway + bli/1) n+ pwéy = 0. (2.21)

Separating real and imaginary parts in (2.21), on the basis of (2.7), (2.13) and

15



2.2 Solution of the dispersion equations. Plane harmonic waves

equalities

Qe = apy — az — tw (opy + ¥ ), pw?€s = opw? + iwE* pw?,

aia + pwian + b1y = polo + apw® + a1 — iw (pE€o — ot + a*pw? + as)
we obtain the following system

(apo — az)n* = (oo + apw?® + a1) n + &pw? = 0,

(2.22)
(ovptg + i) m* — (€0 — Ho€™ + @ pw? + az) n — £ pw? = 0.
As one may easily verify, the system (2.22) may be written in the form
mnz = n(asn + a1), (2.23)
(' +&)m = nlaz — pine), (2.24)

where 7, = pon — pw?, m2 = an — &. Obviously, by (2.23) and (2.24) we have
nmz # 0. On the other hand, taking into account (2.23) from (2.24) it follows that

(a*n+ &%) (asn + a1) = na(ag — pgn2),

and hence,
a*agn(n — o) + pgns — aznz + ar§* =0, (2.25)

where
ras + afay
a*as

By virtue of conditions (2.13) and (2.14) we have

Mo = < 0.

a*ag > 0, a5 — da e = — [de* + 4,ugdw2] < 0.

Therefore, from (2.25) we obtain n(n — 1y) < 0. Finally, we may write n €]ny; 0]

and lemma 2.1 is thereby proved. ¢

We assume that Im 7; > 0(j = 1,2,3). Lemma 2.1 leads to the following

16



2.3 Fundamental solution

result.

Theorem 2.1. If the conditions (2.13) are satisfied, then through a Kelvin-Voigt
material with voids four plane harmonic plane waves propagate: two longitudinal
plane waves P; and P, with wave numbers 1,7 and two transverse plane waves

SH and SV with wave number 73; these are attenuated waves as r; — +00.

Remark 2.1. It is obvious that if plane harmonic waves are propagated in an
arbitrary direction through a Kelvin-Voigt material with voids, then we obtain

the same result as given in theorem 2.1.

Remark 2.2. In the theory of elasticity through an isotropic material with voids
four (two longitudinal and two transverse) plane harmonic waves propagate; the
longitudinal waves are attenuated and the transversal waves have the constant

amplitudes (for details, see Puri and Cowin [32]).

2.3 Fundamental solution

Definition 2.1. The fundamental solution of the system (2.10) (the fundamental
matrix of operator A(Dy)) is the matrix I'(x) = (I';;(x)),, , satisfying condition

in the class of generalized functions (see Hérmander [87])
A(D,)T(x) = §(x)J,

where x € R3.
In what follows we assume that 77 # 72 # 72 # 7. In the sequel we use the

matrix differential operators:

17



2.3 Fundamental solution

1)
L(DX) = (LPQ(DX))4><4’
1
Lij(Dx) = M—(A + 1) (A + 73)0
1
2
— M+ ) (A + &) + by | ———,
Qv fiq o [(Ar+ pm){en &) ] 01,0 (2.26)
by O 0
L DX = - a5 L Dx = A+ WQ a0
14(Dx) aq g 0y u(Dx) vyl fho (hu p) Oz
1 ) .
L1s(Dx) = (A +pw?),  1,j=1,2,3.
3)251
2)

A<A) = (LPQ(A))

4x4

A (A) = Ap(A) = Ag3(A) = (A + 1) (A + ) (A +73),

(2.27)
Au(Ad) = (A+ ) (A+75),  Ay(Ad) =0,
pg=1234 p#q
We have the following result.
Lemma 2.2. If
aq iy i # 0, (2.28)
then
A(D,)L(Dy) = A(A). (2.29)

Lemma 2.2 is proved by direct calculation.
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2.3 Fundamental solution

We introduce the notations

Y (%) = (Ypg(¥))esr  Yir(¥) = Yao(x) = Yas(x) = 1575 (%),

(2.30)
}/214(X) = CQj’Yj(X% Y;Jq(x) = 07 b, 4= 17 27 3a 4a p 7& q,
where
()=~ I G-
vi(x) = ——, C1i = T —T) ",
J 47 |x]| J ¥ ! J
Co1 = —Coo = (13 — 11) 7, 23 = 0, J=123
Obviously, Y is the fundamental matrix of operator A, that is,
AA)Y (x) =d(x)J, (2.31)
where x € R3.
We define the matrix I' = (I'y,),. ., by
I'(x) = L(Dx)Y(x). (2.32)

A(D,)T(x) = A(Dy) L(DL) Y (x) = A(A)Y(x) = 8(x) J.

Hence, I'(x) is the fundamental matrix of differential operator A (D). We have

thereby proved the following theorem.

Theorem 2.2. If condition (2.28) is satisfied, then the matriz T'(x) defined by
(2.52) is the fundamental solution of system (2.10), where the matrices L(Dy)
and Y are given by (2.26) and (2.30), respectively.

We are now in a position to establish basic properties of matrix I'(x). Theorem

2.2 leads to the following results.

Corollary 2.1. If condition (2.28) is satisfied, then each column TU)(x) of the
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2.3 Fundamental solution

matriz T'(x) is the solution of the homogeneous equation
A(D,)TYV(x) =0 (2.33)

at every point x € R® except the origin, where TV = (I'y;,Ty;,T3;) and j =
1,2,3,4.

Corollary 2.2. If condition (2.28) is satisfied, then the fundamental solution of

the system
w1 Au(x) + (A + ) Vdivu(x) = 0, a1 Ap(x) =0

is the matrizc W = (V) ,, . » where

1 /\1 + 1 82
U, = —Ad,; —
& (X> <N1 Y 1t (%Czaxj

> a(x),

Wi5(x) = o Y5(x),  Wul(x) = Vy(x) =0,

Clearly (see Kupradze et al. [83]), the relations
U (x)=0(x[7"),  Vux)=0(x"),

\1114 (X) = \1114 (X) = 0, l,] = 1,2,3

hold in a neighborhood of the origin.

On the basis of theorem 2.2 and corollary 2.2 we obtain the following result.
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2.3 Fundamental solution

Theorem 2.3. If condition (2.28) is satisfied, then the relations
Ly (x) = O (Jx™"), Ty (x) = ¥y (x) = const + O (|x]),

oP

P1 P2 p3
Oz 0x5* Oty

[Ty (x) = Wy ()] = O (Ix|"™)

hold in a neighborhood of the origin, where p =p; +p2+p3, p>1,p, >0, ¢ =
1,2,3 and Ij = 1,2, 3, 4.

Thus, ¥ (x) is the singular part of the fundamental matrix I" (x) in the neigh-
borhood of the origin.

It is easy to see that each column I')(x) of the matrix I'(x) is represented
as follows

'V (x) = Z T (x),

=1

where U0 = <ngl), rY i, Ffljl)); 'Y is a solution of Helmholtz equation

(A+ 7T (x) = 0

p

and satisfies the radiation conditions at infinity

T ) = e 0(x| ),
) (2.34)
(@ — 7:7'[) F]()]l)(X) = GZTZIX|0(|X|_2)

for x| >1,1=1,2,3, j,p=1,2,3,4.
Equalities in (2.34) are the radiation conditions for metaharmonic functions
(for details, see Sommerfeld [88], Kupradze [89], Vekua [90]).

Remark 2.3. For investigating BVPs of the theories of elasticity and thermoe-
lasticity by potential method it is necessary to construct fundamental solutions of
corresponding systems of partial differential equations and to establish their basic
properties. Several methods are known for constructing fundamental solutions

in the classical theories of elasticity and thermoelasticity (for details, see Gurtin
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2.4 Green’s formulas. Representations of general solutions

[91], Hetnarski and Ignaczak [92], Nowacki [93]). The explicit expressions of fun-
damental solutions in the theory of elasticity, thermoelasticity and micropolar
theory were obtained in different manner by Kupradze et al. [83], Sandru [94],
Dragos [95]. The basic properties of fundamental solutions of partial differential

equations are given in the book of Hormander [87].

2.4 Green’s formulas. Representations of gen-

eral solutions

In this section, first, we establish the Green’s formulas in the linear theory of
viscoelasticity for Kelvin-Voigt materials with voids, then we obtain the inte-
gral representation of regular vector (representation of Somigliana-type) and the
Galerkin-type solution of the system (2.6). Finally, we establish the representa-
tion of the general solution of the system of homogeneous equations (2.11) by
using metaharmonic functions.

In the sequel we use the matrix differential operators A(Dy), P(Dy,n),
P(Dy,n), where A(Dy) = AT(—D,) and

P(Dy.n) = (Pyy(Dx.m)),y . P(Dxm) = (Pyy(Dum)) .

0 0 0
Plj<Dx; Il) = 'uldlja_n + /anja—ml + )\ml%,
J
(2.35)

0
B4(DX7 11) = by ny, P4Z(DX7 n) =0, P44(Dx7 11) = alf)_n’

ij(Dx,l’l) = ij(DX7n>7 Pj4(DX7n) = I ny,

p44(Dxan) = P44(nyn)7 l7j = 172737 p= 1a27374'

Here n = (ny, ng, n3) is the unit vector, is the derivative along the vector n

on

and the superscript T denotes transposition.

Obviously, the fundamental matrix T'(x) of operator A(Dy,) satisfies the fol-
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2.4 Green’s formulas. Representations of general solutions

lowing condition

['(x)=T"(—x). (2.36)

Let fJ'j be the j-th column of the matrix U = (Uz]')4x4, j=1,2,3,4. As in
classical theory of thermoelasticity (for details, see Kupradze et al. [83]) we can

prove the following result.

Theorem 2.4. If U and Uj (j =1,2,3,4) are regular vectors in Q7F, then

[ {ADYO V) - O] AD)UE) } dy
" (2.37)

= / {[P(DZ, n)ﬁ(z)]TU(z) — [ﬁ(z)]TP(Dz,n)fj(z)} d,S.

On the basis of theorem 2.4 and condition (1.1) we obtain the following result.

Theorem 2.5. If U and (7]- (j =1,2,3,4) are regular vectors in 2~, then

[ {ADO V) - (O] AD,)U) | dy
(2.38)
—— [{PO.0)0@) V() - [0)) PD, )T } .5

The identities (2.37) and (2.38) are the Green’s formulas in the linear theory
of viscoelasticity for Kelvin-Voigt materials with voids for domains Qt and Q~,
respectively.

Keeping in mind (2.33), (2.34), (2.36), theorems 2.2 and 2.3 from (2.37) and
(2.38) we obtain the formulas of integral representation of regular vector (repre-

sentation of Somigliana-type) for the domains Q* and Q.
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2.4 Green’s formulas. Representations of general solutions

Theorem 2.6. If U is a reqular vector in QF, then

U(x) = / {[P(DZ, n)I'" (x — 2)] "U(z) — T(x — z) P(D,, n)U(z)} d,S
S

+ [ T0x - y) AD, Uy

> (2.39)

Theorem 2.7. If U is a reqular vector in 2~, then

Ux) = — / {[ﬁa)z, n)I'" (x — 2)]TU(z) — D(x — z) P(D,, n)U(z)} d,S
S

+ [T y) AD,) Uy

(2.40)

The next two theorems provide a Galerkin-type solution to system (2.6).

Theorem 2.8. Let

1

u(x) p (A + 1) (A +75) w(x)
1
1 .
—— (A1 + ) (1A + &) + by ] Vdiv wi(x)
(2.41)
by

—_ v X ,

a1y ol )

X) = (A + pw?) div w(x) + (2 + pw?) wo(x),
oy fhy 2 anfi
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2.4 Green’s formulas. Representations of general solutions

where w = (wy,wq, w3) € C%(Q), wy € C*(N), and

(A+ ) A+ ) A+ 73) w(x) = —pF(x),
(2.42)
(A+ 1) (A +735) wo(x) = —p Fa(x),

then U = (u, ) is a solution of system (2.6).

Proof. By virtue of (2.26) and (2.27) the equations (2.41) and (2.42) we can
rewrite in the form

U(x) = L(Dy) W(x) (2.43)

and
A(A)W(x) = F(x), (2.44)

respectively, where W = (w,wy), F(x) = (—pF, —pF,). Clearly, by (2.29),
(2.43) and (2.44) the vector U is a solution of the system (2.6). o

Theorem 2.9. [fU = (u, ¢) is a solution of system (2.6) in 2, then U is
represented by (2.41), where W = (w,wy) is a solution of (2.42) and §2 is a finite

domain in R>.

Proof. Let U be a solution of system (2.6). Obviously, if ¥'(x) is the funda-

mental matrix of the operator L(Dy) (see (2.26)), then the vector function
W) = [ Wix-y)Uly)dy
Q

is a solution of (2.43).
On the other hand, by virtue of (2.8), (2.29) and (2.43) we have

F(x) = A(D,)U(x) = A(Dy)L(Dy) W(x) = A(A) W(x).

Hence, W is a solution of (2.43). o

Remark 2.4. Quite similarly as in theorem 2.2 we can construct the fundamen-

tal matrix W'(x) of the operator L(Dy) by elementary functions.
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2.4 Green’s formulas. Representations of general solutions

Thus, on the basis of theorems 2.8 and 2.9 the completeness of Galerkin-type
solution of system (2.6) is proved.
Now we consider the system of homogeneous equations (2.10). We have the

following results.

Theorem 2.10. If metaharmonic function p; and metaharmonic vector func-

tion ¥ = (11,19, 13) are solutions of equations

(A+7He;(x)=0, j=1,2 (2.45)
and
(A+7)p(x) =0,  divep(x) =0, (2.46)
respectively, then U = (u,p) is a solution of the homogeneous equation (2.10),
where
u(x) = Ve o1(x) + 2 p2(x)] + 9 (x),
(2.47)
p(x) = p1(x) + ¢2(x)
for x € Q; Q is an arbitrary domain in R and
1 9 .
Cj = pw21/1 [(O&lTj — 52)#2 — blyl} s ] = 1,2 (248)

Proof. Keeping in mind the relations (2.45)-(2.48) and

(—uQTf—I—pr) c; + b =0, j=12

26



2.4 Green’s formulas. Representations of general solutions

we obtain by direct calculation

p1 Au+ (A + pp)Vdivua + by grad o + pw?u
= —p1 V(ermipr + cam509) — (M 4 ) V(ermior + T3 09)
+b1 V(p1 + p2) + pw? V(crpr + caps) + A + pw’

= [(—pami 4+ pw?) c1 + ] Vopr + [(—pe7s + pw?) c2 + b1] Voo = 0.

Quite similarly, by virtue of (2.47) and

V1T]20j—(¥173~2+§2:07 J=12

we have

(1 A+ &) —rdiva = —(ar7f — &)1 — (a1 — &)z + i (aTier + cT3¢s)

= (nticy — i + &)oL + (T e — T + &) = 0. o

Theorem 2.11. If U = (u, ) is a solution of the homogeneous equation (2.10)
in Q, then U is represented by (2.47), where @; and ¥ = (¢1,12,13) are so-
lutions of (2.45) and (2.46), respectively; § is an arbitrary domain in R* and
cj (j =1,2) is given by (2.48).

Proof. Applying the operator div to the first equation of (2.10) from system
(2.10) we have
(2 A+ pw?)diva+ by A =0,

(2.49)
(g A+ &) — 1y diva=0.
Clearly, we obtain from (2.49)
(A+ 1A +73)p =0. (2.50)
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2.4 Green’s formulas. Representations of general solutions

Now applying the operator curl to the first equation of (2.10) it follows that
(A +72) curlu = 0. (2.51)

We introduce the notation

1 2 1 2
801:7_22_7_12(A+T2)907 (102:7_12_7_22(A+7-1)907
(2.52)

Y = /~L_12 curl curl u.
pw

Taking into account (2.50) - (2.52), the function ¢; and vector function 1 are
the solutions of (2.45) and (2.46), respectively, and the function ¢ is represented
by (2.47).

Now we prove the first relation of (2.47). Obviously, on the basis of (2.45) the

second equation of (2.49) we can rewrite in the form
divu = c3¢1 + 49, (2.53)
where )
cj=—(&— 0417]2_2)7 J =34
V1
Keeping in mind (2.52), (2.53) and identity

Au = Vdivu — curl curlu

from (2.49) we obtain

1
u = ——QV[MQdivu+bl (,0] ‘|"l,b
pw
(2.54)
1
=T V(pa2cs + b1) @1 + (paca 4 br) pa] + 3.
Finally, from (2.54) we get the first relation of (2.47). o

Hence, on the basis of theorems 2.10 and 2.11 the completeness of solution of
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2.4 Green’s formulas. Representations of general solutions

the homogeneous equation (2.10) is proved.

Remark 2.5. Contemporary treatment of the various BVPs of the theories of
elasticity and thermoelasticity usually begins with the representation of a solution
of field equations in terms of elementary (harmonic, biharmonic, metaharmonic
and etc.) functions. In the classical theories of elasticity and thermoelastic-
ity the Boussinesq-Somigliana-Galerkin, Boussinesq-Papkovitch-Neuber, Green-
Lamé, Naghdi-Hsu and Cauchy-Kovalevski-Somigliana solutions are well known
(for details, see Gurtin [91], Hetnarski and Ignaczak [92]). A review of the history
of these solutions is given in Wang et al. [96]. The Galerkin type solution (see
Galerkin [97]) of equations of classical elastokinetics was obtained by lacovache
[99]. In the linear theory of elasticity for materials with voids, the Boussinesq-
Papkovitch-Neuber, Green-Lamé and Cauchy-Kovalevski-Somigliana type solu-
tions were obtained by Chandrasekharaiah [99, 100]. The representation theorem
of Galerkin type in the theory of thermoelasticity for materials with voids was
proved by Ciarletta [43].
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Chapter 3

Boundary value problems in the
theory of viscoelasticity for

materials with voids

3.1 Basic boundary value problems

The basic internal and external BVPs of steady vibration in the theory of vis-
coelasticity for Kelvin-Voigt materials with voids are formulated as follows.
Find a regular (classical) solution to system (2.9) for x € QF satisfying the

boundary condition

lim U(x)={U(z)}" =1(z) (3.1)

Qtsx—zeS
in the Problem (I)g ¢, and
{P(D,,n(z))U(2)} " = f(z) (3.2)

in the Problem (II)gg, where the matrix differential operator P(D,,n(z)) is
defined by (2.35), F and f are the known four-component vector functions.

Find a regular (classical) solution to system (2.9) for x € 0~ satisfying the
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3.2 Uniqueness theorems

boundary condition

Q—aljgzesU(X) =1{U(z)}” =1(2) (3.3)
in the Problem (I)g ¢, and
{P(D,,n(2))U(2)}~ = f(2) (3.4)

in the Problem (II)p;. Here F and f are the known four-component vector
functions, supp F is a finite domain in 27, and n(z) is the external (with respect
to Q7) unit normal vector to S at z.

In the Sections 3.2 and 3.4 the uniqueness and existence theorems for classical
solutions of the BVPs (K)f ¢ and (K)g ¢ are proved by using the potential method

and the theory of singular integral equations, respectively, where K = I, 1.

3.2 Uniqueness theorems
In the sequel we use the matrix differential operators
B(Dx) - (Blj(Dx))3><37 T(Dx7n) = (,Z_}j(van>)3x37

where

2

al’lal’j’

Bij;(Dx) = i1 A6y + (M + )

0 0 0 ,
ﬂj(DX7 n) - /Llfsl]a_n + Mln]a_l'l + Al”l%? l;j = 17 27 3.
J

Obviously, T(Dy, n) is the stress operator in the classical theory of elasticity (see
Kupradze et al. [83]).
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3.2 Uniqueness theorems

Theorem 3.1. If conditions

W >0, 3N +2uF >0, at >0,
; (3.5)
(BA™ +2u7)" > (b*+u)

are satisfied, then the internal BVP (K);f admits at most one reqular solution,
where K = 1,11.

Proof. Suppose that there are two regular solutions of problem (K );Sf Then their
difference U corresponds to zero data (F = f = 0), i.e. U is a regular solution of
problem (K)go.

On account of (2.10) from Green’s formulas of the classical theory of elasticity
(see Kupradze et al. [83])

/ (B(Dy) 11+ W(w A, )] dx — /’I‘u ud,S,

O+
¥ _
/[AWHVM /a_
a+ S
and identity
/(Vgp-u—i—gpdivu)dx:/gon-usz
o+ S

it follows that

/[W(u,)\l,,ul)—pw2‘u‘2+blgpdivﬁ] dx:/(Tu+blgpn).usz,

o+ 4
(3.6)

/[oz1|VQ0| — & |p? +V1dlvugp /6_<p@

o+ g
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3.2 Uniqueness theorems

where

1 .
Wi(a, Ay, 1) = §(3A1 + 211) |div u)?

(3.7)

-~ ]

Clearly, W (u, Ay, 1) = W(u, A, ) — iwW (a, A%, p*). In view of (3.6) we get

8uj uy |
895; 833]-

Oou  Ou,

—~ |0z, Ou;

1 3
P
l,j

/ (W, A, 1) — pw® uf® + a1 [V o = & o + (b e diva + vy divu ¢)] dx
O+

dp
:/{(Tu—f—blcpn) 11+0418—90 d,S,

and on the basis of homogeneous boundary condition and the identity
Im (b pdiva+ vy divap) = —w(b* + v*) Re(p diva)
we obtain

/ [(W(u, \*, ") — (0" + v*) Re(pdiva) + £ o] + a* [V o?] dx = 0. (3.8)

O+

Obviously, with the help of (3.5) it follows that
%(3)\* +2p)[divul® — (b* + v*) Re(pdiva) + £ |p]* > 0
and from (3.8) we have
W(u, \*, 1*) — (b* + v*) Re(pdiva) + £* |¢|* + a* |grad p|* = 0.

It is easy to verify that on the basis of (3.5) the last equation leads to the following
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3.2 Uniqueness theorems

relations 5 P
. U Uuj

=0, d =0, —24+—=0

PO) =0, divu(x) =0, FE+ =0
(3.9)

Ou;  Ou, ‘
——— =0, [,7=1,2.3
aajl 63;'] b 7] b )

for x € Q. In view of (3.9) we get W(u, A\, ) = 0 and W (u, \*, u*) = 0. Hence,
W(u, Ai, 1) = 0. Finally, from the first equation of (3.6) we obtain u(x) = 0.
Thus, U(x) =0 for x € Q. ©

Lemma 3.1. If U = (u,¢) € C*(Q) is a solution of the system (2.10) for x € 2,
then

ux) = ulx), ek =3 ¢ x), (3.10)
where Q is an arbitrary domain in R®, uY) and ¢ satisfy the following equations

A+7ulx) =0, (A+7)p(x) =0,

(3.11)
[=1,2, j=1,2,3.
Proof. Applying the operator div to the first equation of (2.10) we get

(2 + pw?)divu + by A =0,
(3.12)

(g A+ &) — 1y diva=0.

Clearly, from system (3.12) we have
(A+72) (A +73)diva =0,

(3.13)

(A+78)(A+73) e =0.

Now, applying the operator (A + 72) (A + 72) to the first equation of (2.10)
and using (3.13) we obtain

(A+7)(A+7)(A+1Hu=0. (3.14)

34



3.2 Uniqueness theorems

We introduce the notation

(3.15)

PO= 1] -7 A+7)e 1=12
p=Lp#l
By virtue of (3.13) and (3.14) the relations (3.10) and (3.11) can be easily
obtained from (3.15). o

Now let us establish the uniqueness of a regular solution of external BVPs.

Theorem 3.2. If conditions (3.5) are satisfied, then the external BVP (K)g

admits at most one reqular solution, where K = I,11.

Proof. Suppose that there are two regular solutions of problem (K )E’f. Then
their difference U = (Uy, Us, Us, Uy) corresponds to zero data (F =f =0), i.e. U
is a regular solution of the problem (K )g .

Let Q, be a sphere of sufficiently large radius r so that Qt C €2,.. By virtue
of homogeneous boundary condition (f = 0), the formula (2.36) for the domain

Q. =07 N, can be rewritten as

/ [(W(u, A, 1) — p?lul® + o [Vol? = &lof* + (b pdivi+ v divu )] dx

Qr

0
:/[(’I‘u—kblgon)~u+oz1—(’0@] sz,

on
Sr
(3.16)
where S, is the boundary of the sphere €2,. From (3.16) we have
: O _
N = lim (Tu+bypn)-u+a;—¢| d,S, (3.17)
T—00 on

T
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3.3 Basic properties of elastopotentials

where

N = / [(W(u, \*, ") — (" + v*) Re(pdiva) + £ [p]* + o [Vy|*] dx.  (3.18)
G-

Obviously, by condition (3.5) it follows from (3.18) that N > 0.
On the other hand, keeping in mind the conditions (1.1), (2.34) and (3.10)
from (2.40) we obtain

Uj(z) = e ™™MO(x|™),
(3.19)
Uji(x) = e~ ol O(|x|™) for |x|>1,

where 79 = min {Im 7, Im 7, Im73} >0, [ =1,2,3, j = 1,2,3,4. On account of
(3.19) from (3.17) it follows that N = 0. Hence, from (3.18) we get

/ (W (u, X*, 1*) — (0" + v*) Re(pdiva) + £ o> + o [grad ¢|*] dx = 0. (3.20)
o

Quite similarly as in theorem 3.1 on the basis of (3.5) from (3.20) we obtain
U(x) =0 forx € Q. ©

Remark 3.1. The uniqueness theorems in the linear theory of elasticity for
materials with voids are proved by Chandrasekharaiah [34]. Basic results as well
as an extensive review on uniqueness theorems in the classical theory of elasticity
can be found in the books by Knops and Payne [101], Kupradze et al. [83].

3.3 Basic properties of elastopotentials

On the basis of Somigliana-type integral representation of regular vector (see,

(2.39)) we introduce the following notations

ZW(x,g) = /F(x —y)8(y)dyS,
S
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3.3 Basic properties of elastopotentials

2%(x.g) = [ [P(Dy.nly))T" (x - y)] g(y)dyS.
S

D (x,6,0%) = / P(x — y)(y)dy,
O+
where g and ¢ are four-component vectors.

As in classical theory of elasticity (see, e.g. Kupradze et al. [83]), the vector
functions ZW(x, g), Z?(x,g) and Z®) (x, ¢, QF) are called single-layer, double-
layer and volume potentials in the linear theory of viscoelasticity for Kelvin-Voigt
materials with voids, respectively.

Obviously, on the basis of (2.39) and (2.40), the regular vector in Q" and Q~

is represented by sum of the elastopotentials as follows

Ux) = Z® (x, {U}) - 20 (x, {PU}) + 2 (x, AU, Q%) for x €

Ux) = -Z@ (x,{U}") + ZU (x,{PU}") + Z¥ (x,AU, Q") for x€Q,

respectively.

First we establish the basic properties of elastopotentials.

Theorem 3.3. If S € C/*'? g c Ci?'(S), 0 < p' <p <1, and j is a non-
negative integer, then:

a)
ZW (., g) € COP'(R®) N CIHLP (QF) N C=(Q),

b)
AD,)ZV(x,g) =0, x€OF

c)

(P(D, n(2) 2% (z,8)}* = F ;(z) + P(D, n(x) 2" (s,8), z€5, (321)
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3.3 Basic properties of elastopotentials

d)
P(D,,n(z)) 2" (z.8)

is a singular integral for z € S.

Theorem 3.4. If S € C7+'7 g c C9P'(S), 0 < p’' < p <1, then:

s
Z (. g) € C7(QF) N O (),
b)
ADZP(x,g) =0, xeQF
c) ,
{ZP(z,g)}t =+ 5 g(z) + 2% (z,g), zeS (3.22)

for the non-negative integer j,

J
7 (z,g)

15 a singular integral for z € S,
e)
{P(D,,n(2)) 2% (z,8)} " = {P(D,.n(2) Z*(z.8)} ",

for the natural number j and z € S.

Theorem 3.5. If S € C'P, ¢ € COP'(QF), 0 < p’ < p <1, then:
a)
ZO (-, ¢,Q%) € CY(R®) N C*HOT) N O (),

b)
AD)Z(x,¢,07) = p(x),  x€Q,
where QU is a domain in R® and Qf C QF.

Theorem 3.6. IfS € C'?, suppp=QC Q™, ¢ cC?(Q7), 0<p’' <p<1,
then:

g
Z®(-,¢,97) € O (R} N Q) N C*7 (%),
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3.3 Basic properties of elastopotentials

b)
ADYZ¥(x,¢,07) = p(x), xecQ,

where ) is a finite domain in R and Qy C Q.

Theorems 3.3 to 3.6 can be proved similarly to the corresponding theorems in
the classical theory of thermoelasticity (for details, see Kupradze et al. [83]).

We introduce the notations

Kg(s) = 5 8(2) + 2% (7, )

XPg(z) = —5 g(2) + P(D,, n() 2" (,8),

K Dg(z) = —% (2) + 20 (z, g), (3.23)
Kg(z) = 5 g(s) + P(D, n()2" (s, g),

1
Keg(z) = —3 (z) + ¢ 29 (z, ) for ze S,

where ¢ is a complex parameter. On the basis of theorems 3.3 and 3.4, KU (j =
1,2,3,4) and X, are singular integral operators (for the definition a singular
integral operator see, e.g. Mikhlin [81]).

In the sequel we need the following Lemmas.

Lemma 3.2. If conditions (3.5) are satisfied, then the singular integral oper-
ator XV (j = 1,2,3,4) is of the normal type.

Proof: Let o) = (0-1(2)4><4 be the symbol of the singular integral operator
KD (5 =1,2,3.4) (see, e.g. Mikhlin [81]). Taking into account (3.23) we find
(for details, see, Kupradze et al. [83], Ch. IV)

: 1 4 ILLQ ()\1 -+ /Jq)()\l + 3#1)
det o) = (——) [1 — ! } = ) 3.24
¢ 2 ()\1 + 2,&1)2 16()\1 + 2M1)2 ( )
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3.3 Basic properties of elastopotentials

Keeping in mind the relations (3.5) from (3.24) we have
det o) £ 0. (3.25)

Hence, the operator KU) is of the normal type, where j = 1,2, 3, 4. o

Lemma 3.3. If £ is a continuous curve on the complex plane connecting the
origin with the point (o and K¢ is a normal type operator for any ¢ € £, then the

index of the operator X, vanishes, i.e.
ind KCO =0.

Lemma 3.3 for the singular integral operators is proved in Kupradze et al.
[83], Ch. IV.

Lemma 3.4. If conditions (3.5) are satisfied, then the Fredholm’s theorems
are wvalid for the singular integral operator XU (KW is Fredholmian), where
j=1,2,34.

Proof: Let o and ind X, be the symbol and the index of the operator X,

respectively. It may be easily shown that

(A1 +2p1)% = p3¢?
16()\1 + 2”1)2

det O-C =

and det o vanishes only at two points ¢; and (3 of the complex plane. By virtue
of (3.25) and deto; = deta® we get (; # 1 for j = 1,2. By Lemma 3.3 we
obtain

ind X" = ind X; = 0.

Equation ind X® = 0 is proved in a quite similar manner. Obviously, the
operators K@ and K® are the adjoint operators for K and KW, respectively.
Evidently,

ind K® = —ind X = 0, ind K® = —ind XM = 0.
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3.4 Existence theorems

Thus, the singular integral operator X (j = 1,2,3,4) is of the normal type
with an index equal to zero. Consequently, the Fredholm’s theorems are valid for
KW (for details, see, e.g. Mikhlin [81]). o

Remark 3.2. The definitions of a normal type singular integral operator, the
symbol and the index of operator are given in Mikhlin [81] and Kupradze et al.
[83].

3.4 Existence theorems

Obviously, by theorems 3.5 and 3.6 the volume potential Z®) (x, F, Q%) is a regular
solution of (2.9), where F € C%?'(Q*%), 0 < p’ < 1; supp F is a finite domain in
Q. Therefore, further we will consider problem (K )({f for K = I,11I. In addition,
we assume that the conditions (3.5) are satisfied.

Now we prove the existence theorems of a regular (classical) solution of prob-

lems (K)g; and (K)qp for K =1, 11.

Problem (I)g¢. We seck a regular solution to problem (I)g in the form

U(x) = Z9(x, g) for xeQ, (3.26)

where g is the required four-component vector function.
By theorem 3.4 the vector function U is a solution of (2.11) for x € Q.
Keeping in mind the boundary condition (3.1) and using (3.22), from (3.26) we

obtain, for determining the unknown vector g, a singular integral equation
KXWg(z) = f(z) for z € S. (3.27)

By lemma 3.4 the Fredholm’s theorems are valid for operator K1), We prove that
(3.27) is always solvable for an arbitrary vector f. Let us consider the associate

homogeneous equation

KDhy(z) =0  for ze€ S, (3.28)
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3.4 Existence theorems

where hg is the required four-component vector function. Now we prove that
(3.28) has only the trivial solution.

Indeed, let hy be a solution of the homogeneous equation (3.28). On the basis
of theorem 3.3 and (3.28) the vector function V(x) = ZW(x,h,) is a regular
solution of problem (17)g 4. Using theorem 3.2, the problem (I7)g 4 has only the

trivial solution, that is
V(x)=0 for xeQ . (3.29)
On other hand, by theorem 3.3 and (3.29) we get
{(V(z)}t ={V(z)} =0 for zeS,

i.e., the vector V(x) is a regular solution of problem (I)g,. Using theorem 3.1,

the problem (I)g o has only the trivial solution, that is
V(x)=0 for xeQ". (3.30)
By virtue of (3.29), (3.30) and identity (3.21) we obtain
hy(z) = {P(D,,n)V(z)}” — {P(D,,n)V(z)}* =0 for zeb.

Thus, the homogeneous equation (3.28) has only the trivial solution and therefore
(3.27) is always solvable for an arbitrary vector f.

We have thereby proved

Theorem 3.7. If S € C?*?, f € C'7'(S), 0 < p' < p < 1, then a reqular
solution of problem (I):Jr,f exists, is unique and 1s represented by double-layer
potential (3.26), where g is a solution of the singular integral equation (3.27)

which is always solvable for an arbitrary vector f.

Problem (I1),;. We seck a regular solution to problem (I7)g, in the form

U(x) = ZW(x, h) for xeQ7, (3.31)
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3.4 Existence theorems

where h is the required four-component vector function.
Obviously, by theorem 3.3 the vector function U is a solution of (2.11) for x €
2~. Keeping in mind the boundary condition (3.4) and using (3.21), from (3.31)

we obtain, for determining the unknown vector h, a singular integral equation
KDh(z) = f(z) for z € S. (3.32)

It has been proved above that the corresponding homogeneous equation (3.28)
has only the trivial solution. Hence, it follows that (3.32) is always solvable.

We have thereby proved

Theorem 3.8. If S € C?*?, f € C'?'(S), 0 < p’ < p < 1, then a reqular
solution of problem (U)E,f exists, 1s unique and 1s represented by single-layer
potential (3.31), where h is a solution of the singular integral equation (3.32)

which s always solvable for an arbitrary vector f.

Problem (I1)§,. We seck a regular solution to problem (/7)§¢ in the form
U(x) = ZW(x,g) for xeQ, (3.33)

where g is the required four-component vector function.
Obviously, by theorem 3.3 the vector function U is a solution of (2.11) for x €
QF. Keeping in mind the boundary condition (3.2) and using (3.21), from (3.33)

we obtain, for determining the unknown vector g, a singular integral equation
K@ g(z) = f(z) for zeS. (3.34)

By lemma 3.4 the Fredholm’s theorems are valid for operator K®. We prove
that (3.34) is always solvable for an arbitrary vector f. Let us consider the

corresponding homogeneous equation
KPgy(z) =0 for ze S, (3.35)

where gq is the required four-component vector function. Now we prove that

(3.35) has only the trivial solution.
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3.4 Existence theorems

Indeed, let gy be a solution of the homogeneous equation (3.35). On the basis
of theorem 3.3 and (3.35) the vector V(x) = Z()(x,g,) is a regular solution
of problem (II)§,. Using theorem 3.1, the problem (II){, has only the trivial

solution, that is
V(x)=0 for xe€Q. (3.36)

On other hand, by theorem 3.3 and (3.36) we get {V(z)}~ = 0 for z € 5, i.e.,
the vector V(x) is a regular solution of problem (I)y,. On the basis of theorem

3.2, the problem (I)q, has only the trivial solution, that is
V(x)=0 for xeQ. (3.37)
By virtue of (3.36), (3.37) and identity (3.21) we obtain
&(z) = (PD, )V(z)} — (PO, )V} =0 for z€S

Thus, the homogeneous equation (3.35) has only a trivial solution and therefore
(3.34) is always solvable for an arbitrary vector f.

We have thereby proved

Theorem 3.9. If S € C?*?, f ¢ C%P'(S), 0 < p’ < p < 1, then a reqular
solution of problem (II)(Jif exists, s unique and 1s represented by single-layer
potential (3.33), where g is a solution of the singular integral equation (5.34)

which is always solvable for an arbitrary vector f.
Problem (I),,. We seek a regular solution to problem (I)g in the form

Uix)=2Z%x,h) for xeQ, (3.38)

where h is the required four-component vector function.
Obviously, by theorem 3.4 the vector function U is a solution of (2.11) for x €
2~. Keeping in mind the boundary condition (3.3) and using (3.22), from (3.38)

we obtain, for determining the unknown vector h, a singular integral equation

KOn(z) = f(z) for zeS. (3.39)
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3.4 Existence theorems

It has been proved above that the corresponding homogeneous equation (3.35)
has only the trivial solution. Hence, it follows that (3.39) is always solvable.

We have thereby proved

Theorem 3.10. If S € C*?, f € C**'(S), 0 < p’ < p < 1, then a reqular
solution of problem ([)67f exrists, is unique and 1s represented by double-layer
potential (3.38), where h is a solution of the singular integral equation (3.39)

which 1s always solvable for an arbitrary vector f.

Remark 3.3. In Pompei and Scalia [102], the BVPs of steady vibrations of
the linear theory of elasticity for materials with voids are investigated. The
potentials of single layer and double layer are used to reduce the BVPs to singular
integral equations for which Fredholm’s basic theorems are valid. Existence and

uniqueness results for external problems are established.
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Chapter 4

Solutions of equations in the
theory of thermoviscoelasticity

for materials with voids

4.1 Basic Equations

The complete system of field equations in the linear theory of thermoviscoelastic-
ity for Kelvin-Voigt material with voids consists of the following equations (Iesan
62)):

1) The equations of motion (2.1) and (2.2);

2) The constitutive equations

ty; = 2pey; + A0y + b'dyy + 207 € + N €015 + 0° ' 6y — B0 6y,

Hj = apl; + o + 770,

H(l) = _bei"r - 5901 - y*é;‘T - 5*90/ + m@', <41)

pn' = pBe., +all +my,

Q=k0;+C ¢ Li=123
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4.1 Basic Equations

3) The geometrical equations (2.4);
4) The equation of energy

oL = @+ p (42)

Substituting (4.1) and (2.4) into (2.1), (2.2) and (4.2), we obtain the following
system of equations of motion in the linear theory of thermoviscoelasticity for
Kelvin-Voigt materials with voids expressed in terms of the displacement vector

u’, the volume fraction field ¢’ and the temperature ¢’ (Iesan [62])
pAR + (A + p)Vdiva' + 0V’ + p* Ad’ + (A + ) Vdiva!
+b* V! — VY =p (W - F),
(@A — €)' —bdive' + (a* A — €)@’ — v divit + (T*A +m)d  (4.3)

= p0¢/ - p‘rjtﬁl?
kNG — aTyd + (C°A — mTy)p' — BTy divid = —pF?,

where F' = (F1, F5, F3).
Ifu',¢’,0" and 3’ (j = 1,2,---,5) are postulated to have a harmonic time

variation, that is,
{u’, N ff;} (x,t) = Re[{u, p,0,F;} (x) e=t] |

then from system of equations of motion (4.3) we obtain the following system

of equations of steady vibrations in the linear theory of thermoviscoelasticity for
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4.1 Basic Equations

Kelvin-Voigt materials with voids

(A + pw?)u+ (A + pp)Vdiva + b,V — VO = —pF,
(ar A+ &)+ (TFA 4+ m)f — vidivu = —pFy, (4.4)

(kA4 1) 0+ (GA +mq)p + [ diva = —pTs,

where Ay, 1, b1, a1, v1, &1, & are given by (2.7) and
c1 = 1waTp, ¢ = —iw(*, my = —iwmTy, B = —iwpBTy. (4.5)

Obviously, (4.4) is the system of partial differential equations with complex coef-
ficients in which there are 21 real parameters: A, \*, u, u*, b, 0", o, a*, &, %, v* K,
Ty, 7, m,a, 3, w, p and p;.

In the absence of the body force, the extrinsic equilibrated body force and the
heat supply from (4.4) we obtain the following system of homogeneous equations
of steady vibrations in the linear theory of thermoviscoelasticity for Kelvin-Voigt

materials with voids

(A + pw?)u+ (A + pp)Vdivu+ b Vo — fVE = 0,
(a1 A+ &)+ (T*A 4+ m)f — vidiva = 0, (4.6)

(kA+c1)0+ (GA+my)p+ frdiva =0,
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4.1 Basic Equations

We introduce the matrix differential operator

92
Aij(Dx) = (1A + pw?)d + (M + “1>8xlax]~’
0 0
Au(Dx) = b1=— 9z, A;s(Dy) = _68_xl’
(4.7)
0
Ay(Dx) = =11 — P Au(Dx) = i A+ &,
xz
Ay5(Dx) = 7T°A +m, Az (Dx) = 15— 8:161
As4(Dx) = GA +my, Ass5(Dy) = kA + ¢4, l,j=1,2,3.
The systems (4.4) and (4.6) can be written as
A(DV () = F(x) (45)
and
A(D)V(x) =0, (49)

where V. = (u,¢,0) and F = (—pF, —pF,, —pTF5) are five-component vector
functions.

In the follows we assume that the constitutive coefficients satisfy the condi-
tions (Iesan [62])

we >0, 3N+ 2u* > 0, o >0, a >0, k>0,
(4.10)
(BN +2u")E* > (lfk + )2, 4ka* Ty > (C* + Tym™)>
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4.2 Fundamental solution

4.2 Fundamental solution

In this section the fundamental solution of system (4.6) is constructed and its

basic properties are established.

Definition 4.1. The fundamental solution of the system (4.6) (the fundamental
matrix of operator A(Dy)) is the matrix ©(x) = (0;;(x))

in the class of generalized functions (see Hérmander [87])

=5 satisfying condition

A(D,)O(x) = §(x)J, (4.11)

where x € R3.

In the sequel we use the following differential operators

1

B (A) = (3lj (A))SXS’ Al(A) - MQkO

det B (A),

where

By (A) = p2A + pw?, Bz (A) = —1nA, Bis (A) = BiA,

Bor (A) = by, Boo (A) = A + &, Bas (A) = QA +my,
Ba1 (A) = =8, Bss (A) = 7°A +m, Bss (A) = kA + ¢y,
Ho = A1+ 21, ko = ark — 7.

Taking into account (2.7) and (4.10) we have i poko # 0.

It is easily seen that
A(A) = (A + &) (A + K3) (A + K3), (4.12)

where £, k3 and k3 are the roots of equation Aj(—k) = 0 (with respect to ). In

view of (2.7) and (4.5) we get

&01 —mmy = —aTp*w? + iwT), [a (p0w2 — f) + mz}
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4.2 Fundamental solution

and by virtue of (4.10) we have
&acp —mmy # 0. (4.13)

Obviously, from (4.13) it follows that x; # 0 (j = 1,2, 3).

In addition, it is also assumed that Ims; > 0 and x7 # k7, where j,1 =

2
W
1,2,3,4, j £ land 52 = 72 = 22
M1
We consider the system of nonhomogeneous equations

(A + pw*)u+ (A + 1) Vdiva — 1y Vo + 5, VO = F,
bldivu + (CYlA + 52)@ + (ClA + ml)H = 9:4, (414)

—Bdivu+ (T"A+m)p + (kA +¢1)0 = Fs,

where F = (F1,Fy, F3). As one may easily verify, system (4.14) may be written

in the form

A" (Dy)V (x) =F (x), (4.15)

where A" is the transpose of matrix A, F = (F,F,,F5) is five-component vector
function on R3, and x € R3.
Applying the operator div to the first equation of (4.14) from system (4.14)

we obtain

(oA + pw?)divu — v1Ap + S A0 = div T,

bldivu + (OdlA + 52)80 + (ClA + m1)9 = 974,

—Bdivu+ (T"A+m)p+ (kA +cp)0 = Fs.

Its matrix form is

B(A) V' (x) = F (x), (4.16)

where V' = (divu, p,0) and F' = ([}, Fy, F3) = (divF,Fy, F5). The system
(4.16) implies
AM(A) V' =, (4.17)
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4.2 Fundamental solution

where
1

a pako

and Bj; is the cofactor of the element By; of the matrix B.

® = (D), Dy, D3), P B F,  j=12.3 (4.18)

Now applying the operators A;(A) to the first equation of (4.14) and taking
into account (4.17) we obtain

Al(A) (,ulA + pw2) u+ ()\1 + ,U1)vq)1 — 1/1V<I>2 + 51V®3 = Al(A)H:

and whence follows

Aoy(A)u = @/, (4.19)
where
Ao(A) = A (A)(A + K3)
and ]
P = o A (A)F — (A + 1)V + 11 VDy — 3 VD). (4.20)
1

By virtue of (4.17) and (4.19) we get
AN (A)V (x) = (x), (4.21)
where ® = (&', ,, d3) and

A/(A) = (Agj (AD Alll(A) = A/22<A> = Alsg(A) = A2(A)7

5x5 7

ANu(A) = A5 (A) = M(A), AR(A) =0,

laj:]-727"'75a l%j
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4.2 Fundamental solution

In view of (4.18) and (4.20) we have

1
@l = M—Al (A)I + nll(A)leV 9:’ + Noy (A)VS’Z} -+ ngl(A)V:}},,
1

Dy = n1a(A) divF + nge(A)Fy + nga(A)Fs, (4.22)

(I)g = nlg(A> leS: + ngg(A):}é + TL33(A)9:5,
where

1
ma(A) = p pzko

[—(A1+ 1) B[ (A) + 1 BR(A) = BB (A)],

1
—B5(A), 1=1,23  j=23.

my(8) = poko

Obviously, from (4.22) we obtain
®(x)=M'" (D,)F (x), (4.23)
where
1 0?

M (Dy) = —A1(A)dy; A
l]( X) /1/1 1( )6lj+n11( )axlaxj’

M (DX> = (Mlj (DX))

5x57

My, (Dy) = n1ypo(A) 7 My (D) = "p—&l(A)a—xla

M,, (Dx) = np_0,4-2(4), l,j=1,2,3, p,q=4,5.
(4.24)

By virtue of (4.15) and (4.23) from (4.21) it follows that A’V = MTA'V. Tt is
obvious that MT A" = A/, and therefore,

A (D) M (Dy) = A’ (A). (4.25)
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4.2 Fundamental solution

We introduce the notations

Y(x) = (Vj(x),,,  Yi(x) =Y5(x) =Yy Z c1;7;(x

/ / o / (4'26)
Yiy(x) = Y55(x) = Coi7; (x), Yzj (x) =0,
la]:1727 '757 l#j?
where A
elﬁj|x|
7%5(%) Arr|x|’ 1= H (ki = 53) 7,
I=1; 1]
3
di= [ si—-r)7" j=1234
I=1;1#j
Obviously, Y’ is the fundamental matrix of operator A’, that is,
AN(A)Y'(x) =6(x) . (4.27)
We define the matrix @ = (©,,). - by
O(x) = M(D,)Y'(x). (4.28)

In view of (4.25), (4.27) and (4.28) we get
A(Dy) O(x) = A(Dx) M(Dx)Y'(x) = A'(A)Y'(x) = 0(x) J'.

Hence, ©(x) is a solution of (4.11). We have thereby proved the following theo-

ren.

Theorem 4.1. If condition (4.10) is satisfied, then the matriz ©(x) defined by
(4.28) is the fundamental solution of system (4.6), where M(Dy) and Y'(x) are
given by (4.24) and (4.26), respectively.

Remark 4.1. The cases when some of ; are equal must be considered separately
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4.2 Fundamental solution

by passing to the limit in the expressions Y{; and Y}, (see (4.26)).
Theorem 4.1 leads to the following results.

Corollary 4.1. If condition (4.10) is satisfied, then each column of the matriz
O(x) is the solution of the homogeneous equation (4.6) at every point x € R>

except the origin.

Corollary 4.2. If condition (4.10) is satisfied, then the fundamental solution of
the system
prAu+ (A + pp)Vdiva = 0,

a1 Ap +17*A0 = 0, kA + (G Ap =0,

is the matriz ®' = (V) where

5x5 7
1 M+ 0
0 = — Ad; —
() (M & pipty  0x,07; 74(%),

1
\Ij;p<x> - \IJ;Z<X) =0, \11214()() - k_0k75(x)7
/ 1 * / 1
\1[45(X) = _kI_QT 75<X>7 \1154(X) = _k_OC1’75(X)7
/ 1 .
\1[55(X) = k_oalf)%(x)v lv] = 17273a b= 4a 57

v4(X) and v5(x) are given in corollary 2.2.

Clearly (see Kupradze et al. [83]), the relations

v () =0(x7"), W, x=0(x"),

o ) o .
%\I}l] (X) = O (’X| 2) ’ %\I{pq (X) - O (|X| 2) )

Uy, (x) =9, (x)=0, [jm=123  pqg=45

hold in a neighborhood of the origin.
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4.3 Galerkin type solution

On the basis of theorem 4.1 and corollary 4.2 we obtain the following result.

Theorem 4.2. If condition (4.10) is satisfied, then the relations
0y () =0 (IXI™"), O (x)=0(x""),
Oy, (x) = const + O (|X\_1) : O, (x) = const + O (\x]_l) ,
Oy (%) — W, (x) = const + O (Ix])

Opq (x) — v, (x) = const + O (|x]),

0" 1 _ 1-m
Fr e (61 (%) = ¥} (x)] = O (Ix|™™).,

or , —m
927 00700 [0 (x) — W, (x)] = O (|x]'™™)

hold in a neighborhood of the origin, where r =ry+ro+1r3, v > 1,1 >0, 1,5 =
1,2,3 and p,q =4, 5.

Thus, ¥’ (x) is the singular part of the fundamental matrix © (x) in the
neighborhood of the origin.

4.3 (Galerkin type solution

In this section the Galerkin type solution of the system (4.4) is obtained, and
the formula of representation of general solution of the system of homogeneous

equations (4.6) in terms of six metaharmonic functions is established.

Let Q1,Qs, -, Qs be functions on Q, QY = (Q1, @2, Q3) . Obviously, ma-
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4.3 Galerkin type solution

trix M defined by (4.24) can be rewritten in the form

MO M MG

M = (Mlj)5><5 = M(4) M44 M45 9
M® My Mss ), .
M) = (Mlj)3x3v M®) = (Ml4>3><1’ M® = (Ml5)3><17 (4.29)

MW = (My), s, M®) = (My), 5,

The next theorem provides a Galerkin type solution to system (4.4).
Theorem 4.3. Let
u=MDQW + M® Q, + M® Qs,
o =MD QW + My Qs + Mys Qs, (4.30)

6 =MO QW 4+ My Q4 + Mss Qs,
where QW Qy and Qs satisfy the following equations
A (A)QW = —pTF, MQ,=—p5F, p=4,5 (4.31)

on Q, then the vector V.= (u, ¢, 0) is the solution of (4.4).

Proof. On the basis of (4.29) from (4.30) we have

V(x) = M(Dy) Q(x). (4.32)

A(A)Q(x) = F(x), (4.33)

where F = (—pF, —pF,, —pTF5) is a five-component vector function.
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4.3 Galerkin type solution

By virtue of (4.25), (4.32) and (4.33) we obtain

A(D,)V = A(D,)M(D,)Q = A'(A)Q = F.

Let O(x) = ((:)lj (X)>5X5 be the fundamental matrix of the operator M(Dy),

ie,

M(D,)0(x) = §(x)J'. (4.34)

We can construct the matrix é(X) by elementary functions quite similarly to

matrix ©(x) in the previous section.

Theorem 4.4. Let Q be a finite domain in R3. If V = (u,p,0) is a solution of
(4.8), then 'V is represented by (4.30), where QW Q4 and Qs satisfy the equations

(4.31).

Proof. Let V = (u, ¢, 0) be a solution of (4.8). On the basis of (4.34) the volume

potential
Q) = [ Ox—y)V(y)iy

is a solution of the following equation
M(DL)Q(x) = V(x). (4.35)

Hence, V is represented by (4.30).
On the other hand by virtue of (4.8), (4.25) and (4.35) we get

A'(A) Q(x) = A(Dx)M(Dx)Q(x) = A(Dx)V(x) = F(x).
Thus, QW, Q4 and Qs satisfy the equations (4.31) ¢

By theorems 4.3 and 4.4 the completeness of Galerkin type solution of system
(4.4) is proved.
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4.4 Representation of general solution of system of homogeneous
equations

4.4 Representation of general solution of system

of homogeneous equations

In this section the general solution of the system of homogeneous equations (4.6)

is represented by six metaharmonic functions.

Let V = (u, ¢, 0) be a solution of (4.6). Applying the operator div to the first

equation of (4.6) from system (4.6) we get

(oA + pw*) v+ b Ap —BAO =0,
—n v+ (1 A+ &)+ (TFA+m)0 =0,

frv+ (GA+my)e+ (kA+c)0 =0,

where v = div u.

In the sequel we need the following lemmas.

Lemma 4.1 If (v, ,0) is a solution of (4.36), then

[ko(p2A + pw?) + ap1) v + aap + a1z = 0,

a1V + (ko A + GQQ)QO + a239 = O,

as1v + a329 + (]C[)A + 6L33)(P = 0,

where
ar = azff — agby, a1z = azzf3 — aabi, a1z = azzfS — agbi,
ag; = —(nk + p17), as) = ok — my T, ao3 = mk — ¢ 7%,
az = a1 + iy, azy = aymy — (1€, aszy = aicy — Gm.

(4.36)

(4.37)

(4.38)

Proof. Multiplying the second and third equations of (4.36) by k and 7*, respec-

tively, and subtracting we get the second equation of (4.37). Multiplying the
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4.4 Representation of general solution of system of homogeneous
equations

third and second equations of (4.36) by «; and (3, respectively, and subtracting
we obtain the third equation of (4.37). Now multiplying the first equation of
(4.36) by ko and substituting here the second and third equations of (4.37) we
finally have the first equation of (4.37). o

We introduce the notations

Ni(A) = —ayz [(koA + ass) (kopaA + kopw? + a11) — ai3a31]

—koa12a23(p + PWQ) + aja(ag1a13 — ayra93),

No(A) = ara [(koA + ag)(kopa A + kopw? + ai) — ai2G21]
(4.39)

+koarzazs (e + pw?) + az(aiase — apaz),

dy = @12(&12&23 - a13a22) + a13(a12a33 - a13a32)
= ko(mmy — &c1) (@128 + arsby).

By direct calculation from (4.38) and (4.39) we obtain the following identity

a12N1(A) + a13N2(A) + dy [ko (oA + pw2) + an] =0.

Lemma 4.2 If (v, ¢, 0) is a solution of (4.36), then

d()gO = N1<A> v, dge = NQ(A) V. (440)
Proof. Applying the operator koA + ass to the first equation of (4.37) and sub-
stituting here the third equation of (4.37) we obtain

(kﬁQA + a33)(k0u2A + k:opw2 + CL11)U + alg(kIUA + a33)g0 — CL13(CL31U + CL32§0) =0,
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4.4 Representation of general solution of system of homogeneous
equations

whence follows

(koA + az3) (kopa A + kopw? 4 a11) — aizaz) v
(4.41)

+ [a12ko A + (a12a33 — ai3asz)] ¢ = 0.

On the other hand, multiplying the first and second equations of (4.37) by ass

and a3, respectively, and subtracting we have

[agsko (ol + PWQ) + a11G93 — a21013) v
(4.42)
+ [—algkoA + (CL126L23 — aggalg)] Y = 0.

Finally, from (4.41) and (4.42) we obtain the first equation of (4.40). Similarly,
from system (4.37) we get the second equation of (4.40). o

We are now in a position to obtain the representation formula for a general
solution of the system of homogeneous equations (4.4) by metaharmonic func-
tions.

Obviously, the determinant of the system (4.36) is u2koA1(A), and hence, v

is a 3-metaharmonic function, i.e.

A1 (A)U = 0, (4.43)

In addition, there are the particular cases, when v (¢ and 6) is a metaharmonic
or bi-metaharmonic function. For example, if § = b; = 0, then from the first

equation of (4.36) we obtain
(A + k1) Jv(x) =0,
2
2

pw . . . :
where k7, = —, i.e. v is a metaharmonic function.
H2
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4.4 Representation of general solution of system of homogeneous
equations

On the other hand, if dy = 0, then on the basis of (4.40) we have Ni(A)v =0
for a1z # 0 or Ny(A)v = 0 for ajy # 0, and therefore, v is a bi-metaharmonic
function.

In the follows we assume that v is a 3-metaharmonic function, and hence,
do # 0. The other cases (when v is a metaharmonic or bi-metaharmonic function)

are too simple to be considered.

Theorem 4.5. If ¢; is a metaharmonic function
(A +K3)p; =0, j=1,2,3, (4.44)
P = (1,9, 13) is a metaharmonic vector function
(A+ K1Y =0 (4.45)

and

divap = 0, (4.46)
then (u, ¢, 0) is a solution of (4.4), where
u=d;Vo;+1, © = ejpj, 0 =rjp; (4.47)
and (d;,e;,r;) is a solution of the system
(k2k — pw?) d;j — biej + Br; =0,
—vK}dj + (K} — &) ej + (k517 —m)r; =0, (4.48)
Bikid; + (GRF —ma)ej + (kwT —c1)r; =0

with determinant equal to zero, j = 1,2, 3.
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4.4 Representation of general solution of system of homogeneous
equations

Proof. Taking into account (4.44) to (4.48) by direct calculation we obtain

(A + pw?)u+ (A + ) Vdivu+ bV — fV6

3
=Y [ (Kd; Ve, + ki) — (M + n)3d; Vo]

J=1

3
+ Z [blengpj - Bergoj + prdjVQP]‘ + pw2¢]

J=1

3
=3 [(parf = p®) dj = brej + Brj] Vip; = 0.

j=1
Similarly, we have
(a1 A+ &)+ (T"A +m)f — rdivua

3
Z —V1K] d + ( Oz1/€2 &)ej+ (K*KJ? —m) rj} Vo; =0,

=1

.

(]{A + Cl) 9—|— (ClA +m1)90 +ﬁ1 divu

3
Z 51:% d; + leﬂ my)e; + (k’lii —c) Tj} V; = 0.

=1

<.

Obviously, the determinant of the system (4.48) vanishes, i.e. pokoAi(—r7) = 0.
o
Theorem 4.6. If (u,p,0) is a solution of (4.6), then u, ¢ and 6 are represented

by (4.47), where v; and 1 are solutions of equations (4.44) and (4.45), (4.46),
respectively; (d;,e;j,r;) is a solution of the system (4.48) (j =1,2,3).
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4.4 Representation of general solution of system of homogeneous

equations
Proof. We introduce the notations
1 1 9 .
pj(x) = — H (At s |v(x), =123 (4.49)
Pi {1m12314 (K7 = #5)
and .
Y = — curl curlu, (4.50)
K

1
where p; (j = 1,2, 3) is an arbitrary complex number and p; # 0.
In view of (4.43) and (4.49) the function ¢, is a solution of (4.44). Applying

the operator curl to the first equation of (4.6) we obtain
(A + K3) curlu = 0.

Taking into account (4.50) the vector function 4 is a solution of (4.45) and (4.46).
Obviously, from (4.49) we get

v(x) = pj pj(x). (4.51)

By virtue of (4.40) and (4.51) we have

Px) = M) = 23y Mi(A)g(x)
— M),
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4.4 Representation of general solution of system of homogeneous

equations
Therefore, ¢ and 6 are represented by (4.47), where
1 2 1 2
ej:d_oijl(_Kj>’ szd—opj]\@(—ﬁj)-
Using the identity
Au = Vv — curl curl u,
from the first equation of (4.6) we have
1
u = ——2V (M2U+b190—59)+’l/) (452)
pw

Substituting the second and third equations of (4.47) and (4.51) in (4.52) we
obtain
13
u=-———-7 (Mgpj + b1€j - BTj) VQOJ‘(X) + 1/)

2
W
pu? i

Hence, u is represented by (4.47), where

1
dj = ~ ot (p2p; + bre; — Bry) . (4.53)

In addition, from the first equation of (4.47) and (4.51) it follows that p;, =

—r3d;. By virtue of (4.53) we have
1 2
dj = W (Mgl‘ijd]‘ — blej + 5Tj)

whence (d;, e;,7;) is a solution of the first equation of (4.48). It is easy to verify
that (d;,e;,r;) is a solution of the second and third equations of (4.48) (j =
1,2,3).

Thus, the general solution of the system of homogeneous equations (4.6) in

terms of six metaharmonic functions ¢; and ¢; (j = 1,2, 3) is obtained. <

By theorems 4.5 and 4.6 the completeness of general solution of system (4.6)

is proved.
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4.3 Green’s formulas. Integral representation of solution

4.5 Green’s formulas. Integral representation of

solution

In this section, first, we establish the Green’s formulas in the linear theory of
thermoviscoelasticity for Kelvin-Voigt materials with voids, then we obtain the
integral representation of regular vector (representation of Somigliana-type) and
a regular solution of the system (4.4).

In the sequel we use the matrix differential operators A(Dy), R(Dx,n) and
R(Dy, n), where

1)

A(D,) = AT (=Dy); (4.54)
2)
R(Dy,n) = (Ryy(Dx, n))sx5,

0 0 0
Rij(Dy,n) = M15lja—n + Ml”ja_xl + Al”l%v
J

Rl4(DX7 Il) = bl np, Rl5(DX7 n) = _ﬂnla

5 (4.55)
R4Z(DX7 n) = R51(Dx, n) =0, R44(Dx, n) = alf)_n’
0 0
Ry5(Dg,n) = T*(?_n’ R54(Dy,n) = Cl(‘?—n’
R(D n)—k:2 l,7=123;
55 X - 81’1’ y ] = 1, 4,9
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4.3 Green’s formulas. Integral representation of solution

R(Dxa 1’1) = <RPQ(DX7 Il)>5><5 ) le (Dxa 1’1) = le (Dxa n)a

Ry (Dy,n) = vy my, Ry5(Dy,n) = — By ny,
(4.56)

qu(ny Il) = qu(DX7 n>7 R4I(DX7 Il) = R5Z<DX7 n) - O,
l?j:]"2737 p)q:475'

Obviously, the matrix differential operator .ZI(DX) is the associate operator of
A(Dy). It is easy to verify that the operator A(Dy) may be obtained from the
operator A(Dy) by replacing by, 8,7, m by vy, 51, (1, m1, respectively, and vice
versa (see (4.7)). On the basis of (4.54) the associated homogeneous system of
equations A (Dy)V(x) = 0 has the following form

(A + pw?)u+ (A + p1)Vdiva + 11V — 5,V = 0,

(ar A+ &)+ (GA 4+ my)f — bydivu = 0, (4.57)

(EA4+c) 0+ (T*"A+m)p+ fdiva = 0.

Similarly, operator R(Dx,n) may be obtained from the operator R(Dy,n) by
replacing by, 8, 7* by 11, 81, (1, respectively, and vice versa. In addition, (on the
basis of (4.54) the fundamental matrix ©(x) of operator A(Dy) satisfies the
following condition

O(x) =0 (—x), (4.58)

where ©(x) is the fundamental solution of the system (4.6) (the fundamental
matrix of the operator A(Dx)).

Let V = (u,¢,0) = (V4, Vo, -+, Vs), the vector \~fj is the j-th column of the
matrix V= (Vij)sxs, @ = (Vij, Vo, Vo) T, @5 = Vi, 0= Vaj, = 1,2,--+,5.
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4.3 Green’s formulas. Integral representation of solution

Theorem 4.7. If V and ‘7J (j=1,2,---,5) are reqular vectors in Q| then

J{ADOVO V) - VeI AD V) | dy
" (4.59)

_ / {RD, 0)V(2)] V() - [0)] R(D,, 0)V(2)} d,5.

Proof. We consider the difference (AV)TV —(V)TAV. The j-th (j = 1,2,---,5)

component of this vector may be written in the form
(AV)TV = VTAV]; = (B, + pu?t; + 1 V5 — 51V, ) u
+ (alAgéj + &3 + GAD, +mal; — by div ﬁj) 0
+ (méj + 1l + TAG; + m@; + Bdiv ﬁj) 9
—1,; (Bu+ pw*u+ bV — SV0)
—@j (1 Ap + &p + T*AO + mb — vy divu)

—0; (EAD + ¢10 + (LA + my@ + By divu)

= (Buju—w;Bu) + a1 (Agjp — §;A0) + G (AéJSO - éjASD>
1 (8836 = ,00) + 7 (A3;60 — $;00) + v (V@u+ @ divu)  (4.60)
61 (VOyu+6; diva) - by (diviy o+ ;7¢)

+8 (div i, 0+ i, V6) .
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4.3 Green’s formulas. Integral representation of solution

Integrating over Q1 using the identities (see, e.g., Kupradze et al. [83], Ch. III)

/ (BINIJ u— flj Bu) dy = / (Tfl] u— ﬁ]Tll) sz,

Q+ S

. . _ [ (9% Oy
/(Asoj 0 — PjAp)dy = / ( on P P an) d,S,
Qt S

/(V@ju—i—gbj divu) dy:/gbj und,S,
O+

n

/(divﬁjg0+ﬁj V) dy:/ﬁjcpndzs,
ot S

from (4.60) it follows that

J

/ (AU)"U - UTAU] dy

O+

Il
e

. . 0p; _ 0y
|:(T11j u— ller‘ll) + oq (a—nj » — @Ja—n)] sz

(96, oy 06, 00\ (03, _ 09
Q(@_n(p 68n>+k<8n0 9]8n>+7— <8n8 “ion 425

:(”1951‘ - 5159‘) u— by, + fu; 9} nd,S

_I_
e

+
e
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4.3 Green’s formulas. Integral representation of solution

~ P, 90, op; 00,
(Tﬁj+ulg5jn—619jn> u+ (Qzlai_l_g ) © + (T*ﬁ +ka_ri) 9] 4,5

!/

) 00\ - [ 9o 0
[ﬁj (Tu + bygn — B6n) + @; (ala—“” +r an> +0, (Cl_i + k—ﬂ d,S

|
e

J

~ [{RO.0VE) V@) - (Ve RO.0VE)] S
S

and formula (4.59) is thereby proved. ¢
On the basis of theorem 4.7 and the condition (1.1) we obtain the following

result.

Theorem 4.8. If V and f/] (7 =1,2,3,4) are regular vectors in 2=, then

J{AD)VEI Vi) - V) AD)V)} dy

(4.61)
/ R(D,.n)V(2)] V(2) - [V(2)] R(D,. 0)V(z) } 5.
S

The identities (4.59) and (4.61) are the Green’s formulas in the linear theory
of thermoviscoelastic materials with voids for domains Q% and €, respectively.
Keeping in mind (4.57) and (4.58) from (4.59) and (4.61) we obtain the formu-
las of integral representation of regular vector and regular solution (representation

of Somigliana-type) for the domains Q" and Q™.

Theorem 4.9. If V is a reqular vector in QF, then

V(x) = / {[f{(Dz, n)0' (x —z)]'V(z) — O(x — z) R(D,, n)V(z)} d,S

+ / O(x—y)ADy)V(y)dy  for xeQ.

(4.62)
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4.3 Green’s formulas. Integral representation of solution

Theorem 4.10. If V is a regular vector in Q)™ , then

Vi(x) = / [[R(D,.n)07(x )] V(2) - ©(x ~ &) R(D,. n)V(z) }
S
+ / O(x—y)ADy)V(y)dy  for xeQ .
J

(4.63)
Obviously, on the basis of (4.62) and (4.63) we have the following results.

Corollary 4.3. If V is a reqular solution of (4.4) in Q%, then

Vi(x) = / {[R(DZ, n)0" (x — 2)] ' V(z) — O(x — z) R(D,, n)V(z)} d,S
S

forx e QF.
Corollary 4.4. If V is a reqular solution of (4.4) in Q~, then

V(x) =— / {[R(Dz, n)0'(x —2z)]'V(z) - O(x — z) R(D,, n)V(z)} d,S
’ (4.64)
forx e Q™.

Keeping in mind the conditions (1.1) and (4.10) from (4.64) we obtain
Vi(w) = e ™ O(x[ ™),
(4.65)
Vigz) = e7PO(lx[~1)  for x| > 1,

where ko = min {Im k1, Im Ko, Im k3, Imry} >0, 1 =1,2,3, j =1,2,3,4.
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Chapter 5

Boundary value problems in the
theory of thermoviscoelasticity

for materials with voids

5.1 Basic boundary value problems

In the sequel we use the matrix differential operators

1)
R(l) (Dx7 Il) = (R;}J) (Dxa l’l))3><5,

0 0 0
Rl(]l) (Dx, l’l) = ,Ull(slj% + Mlnja_l‘l + )\171[%,
J

Rl(i)<DX7 n) = by ny, Rl(é)<Dxa n) = —fny;

R?(D,,n) = (R?(Dy,n))1xs, R (Dy,n) =0,

0 .
Rﬁ)(Dx,n) =Gy R%)(Dx, n)=r1 n’
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5.1 Basic boundary value problems

R®(Dy,n) = (R} (Dx,n))1xs. R (Dy,n) =0,

0 0
3 3
R§4)(DX7 n) = Cla_na R§4)(DX’ n) = ka_n7
where [,7 = 1,2, 3.
Obviously, we can rewrite the matrix differential operator R(Dy,n) (see

(4.55)) in the form

R(Dyx,n) = (Ryy(Dx,n))sxs,  Rig(Dx,n) = Ry, (Dx,n),

Riy(Dx,n) = R (Dg,n),  Rsy(Dy,n) = RY(Dy,n),

where [ =1,2,3,¢=1,2,---,5.

The basic internal and external BVPs of steady vibrations in the theory of
thermoviscoelasticity for Kelvin-Voigt materials with voids are formulated as fol-
lows.

Find a regular (classical) solution to system (4.8) for x € Q% satisfying the
boundary condition

lim  V(x) = {V(2)}* = f(2) (5.1)

Qto>x—zesS

in the Problem (I11)g ¢, and

Q+91)i£>1zes R(Dy,n(z))V(x) = {R(D,,n(z))V(z)}" = f(2) (5.2)
in the Problem (I V);;’f, where F and f are the known five-component vector
functions.

Find a regular (classical) solution to system (4.8) for x € Q™ satisfying the
boundary condition

lim  V(x) = {V(z)}” = f(2) (5.3)

O~ 35x—z€eS
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5.2 Uniqueness theorems

in the Problem (I11)g ¢, and

lim R(Dx, n(z))V(x) = {R(D,,n(z))V(z)}~ = f(z) (5.4)

Q~5x—zES

in the Problem (IV)g;, where F and f are the known five-component vector

functions, and supp F is a finite domain in 2~.

5.2 Uniqueness theorems

In this section we prove uniqueness of regular solutions of BVPs (K )Pff and

(K ). where K = 11,1V

Theorem 5.1. If condition (4.10) is satisfied, then the internal BVP (K)g ¢

admits at most one reqular solution, where K = II1,1V.

Proof. Suppose that there are two regular solutions of problem (K );Sf Then their
difference V corresponds to zero data (F =f = 0), i.e. V is a regular solution
of problem (K)g,, i.e. the vector V. = (u,¢,0) is a solution of the system of

homogeneous equations (4.6) satisfying the homogeneous boundary condition
U@} =0 (5.5)
in the case K = I11, and
{R(D,,n(2))U(z)}" =0 (5.6)

in the case K = I'V. Obviously, we can rewrite the boundary condition (5.6) in
the form
{RY(D,,n(z))V(z)}* =0, j=1,2,3 (5.7)

On account of (4.6) from Green’s formula of the classical theory of elasticity
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5.2 Uniqueness theorems

(see Section 3.2)

/ B(Dy) u-u+ W(w A, )] dx — S/’I‘u ud,S

O+

and identities
/(Vgp -u+ pdiva) dx = /gpn -ud,S,
O+ S

/(V@-u+9divu)dx=/Gn'usz,
o+ S

it follows that

/ {[B(Dx) u+b0Ve — VO + pw® [uf’] -u+ WH(V)}dx
O+

(5.8)
_ / RO(D,, n)U(z) - u(z) d, 5,
S
where W (u, A1, 1) are given by (3.7) and
WO(V) =W (u, Ay, 1) — pw? [u> + (by ¢ — 36) div i (5.9)

By virtue of the first equation of (4.6), the boundary condition (5.5) in the
case K = II] and (5.7) in the case K = IV, from (5.8) we get

/ WM (V)dx = 0. (5.10)
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5.2 Uniqueness theorems

On the other hand, on the basis of identities

0
/[AwHWIQ} dxz/a—ﬁszdzs,

Qt S

o0
/[A9¢+V0-V@]dx:/a—ngpdzé’,
S

O+

we have
/ {[(a1 A+ &) + (T*A +m)f — vidivu] ¢ + W(Q)(U)} dx
O+
(5.11)
= / R®(D,,n)U(z) ¢ d,5,
S
where
WEA(V) = a1 [Vo|]? — & |p)? + 7°VOVE — mhG + vy divu 3. (5.12)

On account of the second equation of (4.6), the boundary condition (5.5) in
the case K = II1 and (5.7) in the case K = IV, from (5.11) we get

/W<2> (V)dx = 0. (5.13)

Quite similarly, from third equation of (4.6) and conditions (5.5) and (5.7) it
follows that

/W<3> (V)dx =0, (5.14)

where

WO(V) =k|VO|? — c1|0)? + VeV — mypf — By divu 6. (5.15)
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5.2 Uniqueness theorems

Hence, from (5.10), (5.13) and (5.14) we have

/ {wTloIm [WO(V) + WE(V)] — ReW (V) } dx = 0. (5.16)

On the other hand, by virtue of (2.7), (4.5) and the identity
m (b pdiva+ vy divap) = —w(b* + v*) Re(pdiva),
from (5.9), (5.12), (5.15) we obtain
Im [WM(V) + WE (V)]
= —wW(u, \*, u*) — w(b* 4+ v*) Re(pdiva) — flm(¢ diva)
—wa’|Vol* —wo” + 7 Im(VIVE) — mIm(05),
Re W& (V) = k|VO|* — wBTy Im(fdiv ) — wC* Im(VOVE) — wmTpIm(6p)
and consequently, we get
wTp Im (WD (V) + WE(V)] = ReW® (V)
= —w?Ty [W(u, \*, u*) + (b* + v*) Re(p diva) + £*|p]?]
— [k |VO)* — w(¢* + 7)) Im(VOV ) + w’Toa* [V ]

! 1
= —w?Ty [g(?))\* +2p%) [divu)® + (b* + v*) Re(p diva) + §*|tp|2} (5.17)

816] 8ul 2 2]

ox; 8:Cj

aUl auj

= oo,

l,j=1;1#£7

—CU2T0/.L*

1 3
+§Z
Lj

~ or; Oz,

— [k VO] — w(C" + 77T0) Im(VOV ) + w’Tha | Ve|*] .

7



5.2 Uniqueness theorems

Obviously, with the help of (4.10) it follows that

1
S (BA + 2 [divuf® — (0" + v7) Re(p diva) + £ o 2 0,

E|VOP* —w(C* + 7°T) Im(VOV ) + w?Toa*| V| > 0.

From (5.17) we have wTyIm [W(V) + WP (V)] — ReW® (V) < 0. On the
basis of (5.16) we obtain

wTy Im WD (V) + WE(V)] —Re W (V) =0.

It is easy to verify that the last equation and (5.17) lead to the following relations

1
S(3A + 2p)|divul® — (b* + v*) Re(p diva) + & [¢]* = 0,

3 2 3 2
1 Ou; Oy 1 Ou  Ou,
- 70, 7 z Z 2 — 5.18
2 Z aZL‘l + alL‘j + 3 ljzl 8xl 8xj ’ ( )

k|VOP> —w(C* +7°T) Im(VOVE) + w?Toa*| V| = 0.

On account of inequalities of (4.10) from (5.18) we have

Ou;(x) N Ouy(x)

divu(x) =0, e D, =0,

8ul(x) _ an<X) (519)

Oz Oz,

=0, p(x) =0,

0(x) = const, l,j=1,2,3

for x € QT. On the basis of (5.19) from third equation of system (4.6) it follows
that 0(x) = 0. In view of (4.7) we get W (u, A1, 1) = 0. From (5.9) and (5.10)
we obtain u(x) = 0. Thus, V(x) =0 for x € QF. ©

Lemma 5.1. If V = (u,¢,0) € C*(Q) is a solution of the system (4.9) for
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5.2 Uniqueness theorems

x € (), then

3

u(x) = Zu(” (),  ex)=) ¢x),  dx)=) "), (520

=1 =1

where Q is an arbitrary domain in R®, u0) o and 0O satisfy the following

equations

A+ rHu(x) =0,  (A+r7)p"V(x) =0,

(5.21)
(A + £2)0V(x) = 0, 1=1,2,3, j=1,2,3,4.
Proof. Applying the operator div to the first equation of (4.6) we have
(A + pw?)divu + by Ap — BAO = 0,
(a1 A+ &)p+ (T"A +m)f — 1diva = 0, (5.22)
(kA +c1)0+ (GA+my)p + Sidiva = 0.
Clearly, from system (5.22) it follows that

Now, applying the operator A;(A) to the first equation of (4.6) and using (5.23)

we obtain

A (A) (A+K)u=0. (5.24)

We introduce the notation

u7 j:17273747

u? = [ II = -r) ' (Aa+k)
(5.25)

e, 1=1,23.
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5.2 Uniqueness theorems

By virtue of (5.23) and (5.24) the relations (5.20) and (5.21) can be easily
obtained from (5.25). o

Now let us establish the uniqueness of a regular solution of the external BVPs.

Theorem 5.2. If condition (4.10) is satisfied, then the external BVP (K)g ¢

admits at most one reqular solution, where K = II11,1V.

Proof. Suppose that there are two regular solutions of problem (K )E,f- Then
their difference V corresponds to zero data (F =f =0), i.e. V is a regular
solution of the problem (K)g .

Let €, be a sphere of sufficiently large radius = so that Qt C Q,. By virtue
of (4.6) and the homogeneous boundary condition (f = 0), the formula (5.8) for

the domain Q2 = Q™ N2, can be rewritten as
/W<1>(V)dx: /P(l)(Dz,n)V(z) -u(z) d,S, (5.26)
Q- Sr

where S, is the boundary of the sphere 2, and n(z) is the external (with respect

to €,.) unit normal vector to S, at z. From (5.26) we have

7—00

/ W (V)dx = lim [ PY(D,,n)V(z) - u(z) d,S. (5.27)

Sr

In addition, on account of (4.65) we have

lim [ PY(D,,n)V(z) - u(z)d,S = 0.

=00

S,

Hence, from (5.27) we get

/ WO (V) dx = 0. (5.28)
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5.4 Basic properties of thermoelastopotentials

On the other hand, by virtue of (4.65) we obtain

/WU)(V) dx =0, j=23. (5.29)
s

Quite similarly, as in theorem 5.1, on the basis of (4.6), (4.10) from (5.28) and
(5.29) it follows that U(x) = 0 for x € Q™. o

Remark 5.1. In Pamplona et al. [103], the uniqueness and analyticity of
solutions of the initial-BVPs in the linear theory of thermoviscoelasticity for

anisotropic Kelvin-Voigt materials with voids are proved.

5.3 Basic properties of thermoelastopotentials

On the basis of Somigliana-type integral representation of regular vector (see,
(4.62) and (4.63)) we introduce the following notations

2V (x,g) = [ O(x —y)g(y)dyS,
/

29 (x.g) = [ [P(Dy.n(y)® (x — y)| 8(y)d 5.

20 (x, ¢, 0F) = /G(x —¥)#(y)dy,

where g and ¢ are five-component vectors.

As in classical theory of thermoelasticity (see, e.g. Kupradze et al. [83]), the
vector functions Z(l)(x, g), paS (x,g) and 23 (x, ¢, QF) are called single-layer,
double-layer and wvolume potentials in the linear theory of thermoviscoelasticity
for Kelvin-Voigt materials with voids, respectively.

Obviously, on the basis of (4.62) and (4.63), the regular vector V(x) in QF
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5.4 Basic properties of thermoelastopotentials

and 2~ is represented by sum of the thermoelastopotentials as follows

V(x) =2® (x,{V}T) -2 (x,{RV}") + 2 (x, AV,QF)  for xeQF
and

V(x) = 2% (x,{V}7) +2" (x, {RV} ") +2¥ (x, AV.Q")  for x€Q,

respectively.
The basic properties of potentials 2 (x, g), 2 (x, g) and 2 (x, ¢, OF) are

given in the following theorems.

Theorem 5.3. If S € C?*P, g € C'?'(S), 0 < p’ < p <1, then:

a)
20( g) € OO (R) NC2(Q%) N C(Q),
b)
A(Dy) 2W(x,g) =0 for x€QF,
c)
1
{R(D,,n(z)) 2W(z,g)}* =T 5 g(z) + R(D,,n(z)) 2" (z, g) for zeS,
(5.30)
d) R(D,, n(z)2Y(z,g) is a singular integral for z € S.
Theorem 5.4. If S € C?*P, g € C'?'(S), 0 < p’ < p <1, then:
a)
22(, g) € C7(QF) NC=(0F),
b)
ADy )2 (x,8) =0  for xeQF
c)
1
(2 (z,g)}* =+ -g(z) + 2 (z,8) for z€S, (5.31)

2
d)  2%(z,g) is a singular integral for z € S,
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5.4 Basic properties of thermoelastopotentials

{R(D,,n(2)) 2?(2,)}" = {R(D,,n(2) 2”(2,8)}~  for zeS.

Theorem 5.5. If S € C'P, ¢ € COP'(QF), 0 < p’ < p <1, then:
a)
AD(., ¢,0F) € CM(R*) N C*(QF) N C* ()

b)
ADy) 2¥(x,0,07) = p(x)  for xeQF

where QU is a domain in R® and Qf C QF.

Theorem 5.6. If S € C'7, suppp=QC Q~, ¢ cC?'(Q), 0<p’' <p<1,
then:

@)
Z2O(,¢,07) € CV(R) NC*(Q7) N C* (),

b)
ADy) 2 (x,0,07) = p(x)  for xeQ,

where 0 is a finite domain in R and Qy C Q.
Theorems 5.3 to 5.6 can be proved similarly to the corresponding theorems in

the classical theory of thermoelasticity (for details, see Kupradze et al. [83], Ch.
X).
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5.4 Basic properties of thermoelastopotentials

We introduce the notation

KOg(z) = - 8(z) + 27(n.2).

KO g(z) = — - g(z) + P(D,,n(2))2"(z.g),

K Dg(z) = _% (2) + 22 (2, g), (5.32)
KB g(z) = % g(z) + P(D,,n(2))2")(z.8),

1
X,g(z) = —5 (z) + x 2@ (z,g) for ze S,

where y is a complex parameter. On the basis of theorems 5.3 and 5.4, K1) (j =
5,6,7,8) and K, are singular integral operators (see Mikhlin [81], Kupradze et
al. [83]).

In the sequel we need the following Lemmas.

Lemma 5.2. If condition (4.10) is satisfied, then the singular integral operators
KU (j =5,6,7,8) are of the normal type.

Proof: Let o) = (o(j))5x5 be the symbol of the singular integral operator

im
KW (j =5,6,7,8) (see, Mikhlin [81]). Taking into account (5.32) we find
: 1\’ I (A1 + p1) (A + 34
det o) = [ == 1_—1]:_ ) 5.33
we ( 2) { (A1 + 2 32(M 4 2mm)? (533

Keeping in mind the relations (4.10) from (5.33) we have
det o9 # 0. (5.34)

Hence, the operator X is of the normal type, where j = 5,6,7, 8. o

Lemma 5.3. If £ is a continuous curve on the complex plane connecting the

origin with the point xo and j(x is a normal type operator for any x € L, then
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5.5 Existence theorems

the index of the operator if(XO vanishes, i.e.
ind kao = 0.

Lemma 5.3 for an arbitrary singular integral operator is proved in Kupradze
et al. [83], Ch. IV.

Lemma 5.4. If conditions (4.10) are satisfied, then the Fredholm’s theorems
are valid for the singular integral operator K (fk(j) is Fredholmian), where

j=5,6,7,8.

Proof: Let o, and ind fJNCX be the symbol and the index of the operator 9~<X,

respectively. It may be easily shown that

(A4 2p1)* = iy
32()\1 + 2,&1)2

det oy = —

and det o, vanishes only at two points x; and x» of the complex plane. By virtue
of (5.34) and det ; = det 0® we get y; # 1 for [ = 1,2. By Lemma 5.3 we have

ind X® = ind X, = 0.

7

Quite similarly we obtain ind X(® = 0. Obviously, the operators X and

K® are the adjoint operators for K and K®), respectively. Evidently,
indX™ = —indX® =0,  indX® = —indX® = 0.

Thus, the singular integral operator X (j = 5,6,7,8) is of the normal type
with an index equal to zero. Consequently, the Fredholm’s theorems are valid for

5.4 Existence theorems

Obviously, by theorems 5.5 and 5.6 the volume potential Z(?’)(X7F,Qi) is a

regular solution of the system of nonhomogeneous equations (4.8), where F €
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5.5 Existence theorems

CoP"(Q*), 0 < p’ < 1; suppF is a finite domain in Q. Therefore, further we
will consider problem (K )(jif for K =111,1V.

Now we prove the existence theorems of the regular (classical) solutions of

problems (K)g, and (K)g, for K = I11,1V.

Problem (I11)§,. We seck a regular solution to internal BVP (I17)§ in the
form

V(x) = 29(x, g) for xeQf, (5.35)

where g is the required five-component vector function.

By theorem 5.4 the vector function V is a solution of homogeneous equation
(4.9) for x € Q. Keeping in mind the boundary condition (5.1), using (5.31) and
(5.32), from (5.35) we obtain, for determining the unknown vector g, a singular
integral equation

KOg(z) = f(z) for z € S. (5.36)

By lemma 5.4 the Fredholm’s theorems are valid for operator K. We prove that
(5.36) is always solvable for an arbitrary vector f. Let us consider the associate

homogeneous equation
K®hy(z) =0 for ze€ S, (5.37)

where hy is the required five-component vector function. Now we prove that
(5.37) has only the trivial solution.

Indeed, let hy be a solution of the homogeneous equation (5.37). On the basis
of theorem 5.3 and (5.37) the vector function V(x) = ZV(x, h,) is a regular so-
lution of the homogeneous BVP (IV)g . Using theorem 5.2, the problem (1V)g 4

has only the trivial solution, that is
V(x)=0 for xeQ . (5.38)
On the other hand, by theorem 5.3 and (5.38) we get

(V@) ={V(@)} =0 for z€b§,
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i.e., the vector V(x) is a regular solution of problem (UU&()- Using theorem 5.1,

the problem (II1){, has only the trivial solution, that is
V(x)=0 for xeQ. (5.39)

By virtue of (5.38), (5.39) and identity (5.30) we obtain

hy(z) = {R(D,,n)V(z)}” — {R(D,,n)V(z)}" =0 for z€S.

Thus, the homogeneous equation (5.37) has only the trivial solution and therefore
(5.36) is always solvable for an arbitrary vector f.

We have thereby proved

Theorem 5.7. IfS € C??, f ¢ C'P'(S), 0 < p’' < p < 1, then a regular solution
of problem (III):{f exists, 1s unique and is represented by double-layer potential
(5.35), where g is a solution of the singular integral equation (5.36) which is al-

ways solvable for an arbitrary vector f.

Problem (IV),. We seek a regular solution to problem (IV)g; in the form
V(x)=2W(x,h) for xe€Q, (5.40)

where h is the required five-component vector function.

Obviously, by theorem 5.3 the vector function V is a solution of (4.9) for
x € . Keeping in mind the boundary condition (5.4), using (5.30) and (5.32),
from (5.40) we obtain, for determining the unknown vector h, a singular integral
equation

K®n(z) = f(z) for z e S. (5.41)

It has been proved above that the corresponding homogeneous equation (5.37)
has only the trivial solution. Hence, it follows that (5.41) is always solvable for
an arbitrary vector f.

We have thereby proved

Theorem 5.8. IfS € C??, f € COP'(S), 0 < p’' < p < 1, then a regular solution
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of problem (IV)avf exists, 1s unique and is represented by single-layer potential
(5.40), where h is a solution of the singular integral equation (5.41) which is al-

ways solvable for an arbitrary vector f.

Problem (/ V)ar,f. We seek a regular solution to problem (1 V)E; ¢ in the form
Vix)=2W(x,g) for xeQ, (5.42)

where g is the required five-component vector function.
Obviously, by theorem 5.3 the vector function V is a solution of (4.9) for
x € Q. Keeping in mind the boundary condition (5.2), using (5.30) and (5.32),
from (5.42) we obtain, for determining the unknown vector g, a singular integral
equation
K Og(z) = f(z) for zeS. (5.43)

By lemma 5.4 the Fredholm’s theorems are valid for operator K. We prove
that (5.43) is always solvable for an arbitrary vector f. Let us consider the

corresponding homogeneous equation
KOgy(z) =0 for ze S, (5.44)

where gq is the required five-component vector function. Now we prove that
(5.44) has only the trivial solution.

Indeed, let gy be a solution of the homogeneous equation (5.44). On the basis
of theorem 5.3 and (5.44) the vector V(x) = 21 (x, g,) is a regular solution of
problem (IV)go. Using theorem 5.1, the problem (IV)g, has only the trivial
solution, i.e., we have the condition (5.39).

On the other hand, by theorem 5.3 and (5.39) we get {V(z)}~ =0 forz € S.
Hence, the vector V(x) is a regular solution of problem (111 Jo.o- On the basis of
theorem 5.2, the problem (/11)q ¢ has only the trivial solution, i.e., we obtain the
condition (5.38). By virtue of (5.38), (5.39) and identity (5.30) it follows that

g(z) = {R(D,,n)V(z)}” — {R(D,,n)V(z)}* =0 for zeb
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Thus, the homogeneous equation (5.44) has only a trivial solution and therefore
(5.43) is always solvable for an arbitrary vector f.

We have thereby proved

Theorem 5.9. IfS € C??, f € COP'(S), 0 < p’' < p < 1, then a regular solution
of problem (IV)af exists, 1s unique and is represented by single-layer potential
(5.42), where g is a solution of the singular integral equation (5.43) which is al-

ways solvable for an arbitrary vector f.

Problem (/17),;. We seek a regular solution to problem (I/11)g in the form
V(x)=2@(x,h) for xeq, (5.45)

where h is the required five-component vector function.
Obviously, by theorem 5.3 the vector function V is a solution of (4.9) for
x € . Keeping in mind the boundary condition (5.3), using (5.31) and (5.32),
from (5.45) we obtain, for determining the unknown vector h, a singular integral
equation
KDn(z) =f(z) for zeSb. (5.46)

It has been proved above that the corresponding associate homogeneous equation
(5.44) has only the trivial solution. Hence, it follows that (5.46) is always solvable
for an arbitrary vector f.

We have thereby proved

Theorem 5.10. If S € C*!, f € C**'(S), 0 < p’ < p < 1, then a reqular
solution of problem (III)a,f exists, 15 unique and is represented by double-layer
potential (5.45), where h is a solution of the singular integral equation (5.46)

which is always solvable for an arbitrary vector f.

Remark 5.2. In Pompei and Scalia [44], the BVPs of steady vibrations in a
linear theory of homogeneous and isotropic thermoelastic solids with voids is
considered. First, integral relations of Betti type are established. The singular
solutions corresponding to concentrated sources are used to derive representations

of Somigliana type. Then, radiation conditions are introduced and a uniqueness
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result for the external problem is established. The potentials of single layer and
double layer are used to reduce the BVPs to singular integral equations for which
Fredholm’s theorems hold. The existence theorems for external problems are

proved.

Remark 5.3. In Pamplona et al. [104], the analyticity of solutions of the initial-
BVPs in the linear theory of thermoviscoelasticity with microtemperatures for

porous materials is proved.

Remark 5.4. Recently, lesan and Quintanilla [105] presented a strain gradient
theory of thermoviscoelasticity in which the time derivatives of the strain tensors
are included in the set of independent constitutive variables. The basic equations
of the linear theory are derived. The uniqueness and existence theorems in the

considered theory are proved.
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Chapter 6

Concluding remarks

In this chapter the basis results of the presented thesis are summarized and some
fields of application of there results are analyzed.

In the Chapters 2 to 5 the 3D linear theories of viscoelasticity and thermovis-
coelasticity for Kelvin-Voigt materials with voids are investigated and some basic
results of the classical theories of elasticity and thermoelasticity are generalized.
Indeed:

1. The basic properties of plane harmonic waves in the linear theory of vis-
coelasticity for Kelvin-Voigt materials with voids are established. There are two
(P, and P) longitudinal and two (SH and SV') transverse attenuated plane waves

in the Kelvin-Voigt material with voids;

2. The explicit expressions of fundamental solutions for the systems of equa-
tions of steady vibrations in the linear theories of viscoelasticity and thermo-
viscoelasticity for Kelvin-Voigt materials with voids is constructed by means of
elementary functions. The Green’s formulas in the considered theories are ob-

tained;

3. The representations of Galerkin type solutions of the systems of nonhomo-
geneous equations of steady vibrations in the linear theories of viscoelasticity and
thermoviscoelasticity for Kelvin-Voigt materials with voids are presented and the

completeness of these solutions is established;

4. The formulas of integral representations of Somigliana type of regular vec-

tor and regular (classical) solution are obtained;
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5. The representations of general solutions of the systems of homogeneous
equations of steady vibrations in the linear theories of viscoelasticity and ther-
moviscoelasticity for Kelvin-Voigt materials with voids are obtained by using

metaharmonic functions and the completeness of these solutions is established;

6. The basic properties of surface (singe-layer and double-layer) and volume
potentials and singular integral operators are presented. These potentials are
used to reduce the BVPs to singular integral equations for which Fredholm’s the-

orems hold;

7. The uniqueness and existence theorems for classical solutions of the BVPs
of steady vibrations in the linear theories of viscoelasticity and thermoviscoelas-
ticity for Kelvin-Voigt materials with voids are proved by using the potential

method and the theory of singular integral equations.
On the basis of results of this thesis it is possible:

1. To investigate the non-classical problems of the 2D linear theories of vis-

coelasticity and thermoviscoelasticity for Kelvin-Voigt materials with voids;

2. To investigate the non-classical problems in the modern linear theories
of viscoelasticity and thermoviscoelasticity by using potential method and the

theory of singular integral equations for the following materials:

a) a viscoelastic composite as a mixture of a porous elastic solid and a Kelvin-
Voigt material (Iesan [57], Quintanilla [58]),

b) composites modelled as interacting Cosserat continua (Iesan [59]),

¢) mixtures where the individual components is modelled as Kelvin-Voigt vis-

coelastic materials (Iesan and Nappa [60]), and
d) Kelvin-Voigt microstretch composite materials (Passarella et al. [66]);

3. To obtain numerical solutions of the BVPs of the linear theory of viscoelas-
ticity for Kelvin-Voigt materials with voids by using of the boundary element
method;

4) To establish basic properties of plane harmonic waves in the linear theories

of viscoelasticity and thermoviscoelasticity for materials with microstructure (see
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[58, 59, 60, 66]);

5) To construct the fundamental solutions and to obtain the representations
of general solutions for the systems of governing equations of steady vibrations in
the linear theories of viscoelasticity and thermoviscoelasticity for materials with
microstructure (see [58, 59, 60, 66]);

6) To prove the uniqueness and existence theorems in the modern linear the-
ories of viscoelasticity and thermoviscoelasticity for solids with micro and nanos-

tructures.
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